Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2000, Vol. 1 Issue (3): 249-253    DOI: 10.1631/jzus.2000.0249
Science & Engineering     
A ROBUST GAIN-SCHEDULING CONTROL BASED ON VSC AND FUZZY LOCAL CONTROLLER NETWORK
HU Jian-bo, SU Hong-ye, CHU Jian
National Key Lab of Industrial Control Technology, Institute of Advanced Process Control of Zhejiang University, Hangzhou, 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Based on variable structure control (VSC) and fuzzy local controller network (FLCN), a new design method of robust gain-scheduling control is proposed in this paper. The proper sliding-modes and the tendency-rates for general operation-points are introduced such that the system gets into the sliding-modes\' motion as soon as possible and has the desired performance. Its good performance is due to the robustness of VSC. However, any local controller works well only in the local region of a specified operation-point. In this paper functions similar to the fuzzy-attributed function in fuzzy-systems are introduced to form FLCN. The simulation results showed that the presented method is feasible and acceptable.

Key wordsgain-scheduling control      variable structure control (VSC)      sliding-mode      tendency-rate      fuzzy local controller network (FLCN)     
Received: 12 March 1999     
CLC:  TP273  
Cite this article:

HU Jian-bo, SU Hong-ye, CHU Jian. A ROBUST GAIN-SCHEDULING CONTROL BASED ON VSC AND FUZZY LOCAL CONTROLLER NETWORK. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2000, 1(3): 249-253.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2000.0249     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2000/V1/I3/249

[1] Zhao Zhao, Bin Hu, Jun Liang. Multi-loop adaptive internal model control based on a dynamic partial least squares model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 190-200.
[2] Yu-chuan Liu, Shih-ming Yang, Yu-te Lin. Fuzzy finish time modeling for project scheduling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 946-952.
[3] Li-hua LUO, Hong LIU, Ping LI, Hui WANG. Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(3): 191-201.
[4] Jun LI, Nan GAO, Guang-yi CAO, Heng-yong TU, Ming-ruo HU, Xin-jian ZHU, Jian LI. Predictive control of a direct internal reforming SOFC using a self recurrent wavelet network model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(1): 61-70.
[5] Ping WU, Chun-jie YANG, Zhi-huan SONG. Subspace identification for continuous-time errors-in-variables model from sampled data[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1177-1186.
[6] Hassan REZAZADEH, Mehdi GHAZANFARI, Mohammad SAIDI-MEHRABAD, Seyed JAFAR SADJADI. An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 520-529.
[7] Zhi-qiang GE, Zhi-huan SONG. Batch process monitoring based on multilevel ICA-PCA[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1061-1069.
[8] Kai HAN, Jun ZHAO, Zu-hua XU, Ji-xin QIAN. A closed-loop particle swarm optimizer for multivariable process controller design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1050-1060.
[9] Hui-jiao WANG, Xiao-dong ZHAO, An-ke XUE, Ren-quan LU. Delay-dependent robust control for uncertain discrete singular systems with time-varying delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1034-1042.
[10] Wei QIAN, Guo-jiang SHEN, You-xian SUN. Dynamical output feedback stabilization for neutral systems with mixed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1043-1049.
[11] Mei-qin LIU, Sen-lin ZHANG, Gang-feng YAN. A new neural network model for the feedback stabilization of nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1015-1023.
[12] Chang-fei TONG, Hui ZHANG, You-xian SUN. Control synthesis for polynomial nonlinear systems and application in attitude control[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 833-839.
[13] Rui-min WANG, Ying-ying ZHANG, Guang-yi CAO. Hybrid intelligent PID control design for PEMFC anode system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 552-557.
[14] Hui-jiao WANG, An-ke XUE, Yun-fei GUO, Ren-quan LU. Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 546-551.
[15] HUO Hai-bo, ZHU Xin-jian, TU Heng-yong. Iterative learning control of SOFC based on ARX identification model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(12): 1921-1927.