|
|
Global dimension of weak smash product |
JIA Ling, LI Fang |
Department of Mathematics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract In Artin algebra representation theory there is an important result which states that when the order of G is invertible in Λ then gl.dim(ΛG)=gl.dim(Λ). With the development of Hopf algebra theory, this result is generalized to smash product algebra. As known, weak Hopf algebra is an important generalization of Hopf algebra. In this paper we give the more general result, that is the relation of homological dimension between an algebra A and weak smash product algebra A#H, where H is a finite dimensional weak Hopf algebra over a field k and A is an H-module algebra.
|
Received: 20 December 2005
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|