|
|
A novel algorithm for frequent itemset mining in data warehouses |
Xu Li-jun, Xie Kang-lin |
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China |
|
|
Abstract Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their algorithm outperforms state-of-the-art single-table algorithms.
|
Received: 11 June 2005
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|