Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2010, Vol. 11 Issue (5): 349-355    DOI: 10.1631/jzus.A0900580
Mechanics and Civil Engineering     
Evaluation of the performance of surface treatments on concrete durability
Yu-xi Zhao, Pan-feng Du, Wei-liang Jin
Institute of Structural Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper reports on a laboratory-based study carried out to evaluate the effectiveness of surface treatments on the durability of concrete and suggests a number of different evaluation methodologies for assessing the performance of various surface treatments. Durability of untreated and treated concrete specimens was evaluated by measuring chloride diffusion, charge passing capacity, air permeability and water absorption. A total of six concrete surface treatments were selected to represent different generic types, including coating, penetrant and mixed-use treatments. Results show that the concrete specimens with a coating procedure have a better long-term performance and effectiveness than the specimens with the penetrant treatments. This work also indicates that the wetting and drying cycles test can be used to assess the weatherability of the surface treatments. The ASTM C 1202 and the Autoclam air permeability test can be used to evaluate the effectiveness of surface treatments quantitatively. Further work is needed, however, to assess the longevity of the various surface treatments.

Key wordsSurface treatment      Concrete      Durability      Evaluation     
Received: 23 September 2009      Published: 27 April 2010
CLC:  TU5  
Cite this article:

Yu-xi Zhao, Pan-feng Du, Wei-liang Jin. Evaluation of the performance of surface treatments on concrete durability. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(5): 349-355.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0900580     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2010/V11/I5/349

[1] Pui-Lam Ng, Albert Kwok-Hung Kwan, Leo Gu Li. Packing and film thickness theories for the mix design of high-performance concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 759-781.
[2] Chun-ping Gu, Guang Ye, Wei Sun. A review of the chloride transport properties of cracked concrete: experiments and simulations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 81-92.
[3] Kah Yen Foong, U. Johnson Alengaram, Mohd Zamin Jumaat, Kim Hung Mo. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 59-69.
[4] Zhi Wang, Xian-yu Jin, Nan-guo Jin, Xiang-lin Gu, Chuan-qing Fu. Cover cracking model in reinforced concrete structures subject to rebar corrosion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(7): 496-507.
[5] Chi Wang, Yong-fu Xu, Ping Dong. Working characteristics of concrete-cored deep cement mixing piles under embankments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 419-431.
[6] Qiang Xu, Jian-yun Chen, Jing Li, Hong-yuan Yue. A study on the contraction joint element and damage constitutive model for concrete arch dams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 208-218.
[7] Long-bang Qing, Wen-ling Tian, Juan Wang. Predicting unstable toughness of concrete based on initial toughness criterion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 138-148.
[8] Shi-lang Xu, Ling-hua Shen, Ji-yang Wang, Ye Fu. High temperature mechanical performance and micro interfacial adhesive failure of textile reinforced concrete thin-plate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 31-38.
[9] Danial Behnia, Kaveh Ahangari, Ali Noorzad, Sayed Rahim Moeinossadat. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 589-602.
[10] Hui Xu, Yu-xi Zhao, Lei Cui, Bi Xu. Sulphate attack resistance of high-performance concrete under compressive loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 459-468.
[11] Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu. Coupled elasto-plasticity damage constitutive models for concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 256-267.
[12] Jian Ge, Min Guo, Miao Yue. Soundscape of the West Lake Scenic Area with profound cultural background—a case study of Evening Bell Ringing in Jingci Temple, China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 219-229.
[13] Hui Liu, Ming-hua He, Yu-qi Luan, Jia Guo, Lu-lu Liu. A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 856-866.
[14] Mehmet Baran, Merve Aktas. Occupant friendly seismic retrofit by concrete plates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 789-804.
[15] Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li. Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 778-788.