Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (5): 681-687    DOI: 10.1631/jzus.A072163
Energy & Environmental Engineering     
Utilization of fly ash from coal-fired power plants in China
Da-zuo CAO, Eva SELIC, Jan-Dirk HERBELL
Waste Management Engineering, Department of Mechanical Engineering, University of Duisburg-Essen, Duisburg 47057, Germany
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the advantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Reasonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.

Key wordsFly ash utilization      Aluminum recycling      Concrete      Chemical and physical analyses     
Received: 20 July 2007      Published: 27 March 2008
CLC:  X7  
Cite this article:

Da-zuo CAO, Eva SELIC, Jan-Dirk HERBELL. Utilization of fly ash from coal-fired power plants in China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(5): 681-687.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A072163     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I5/681

[1] Pui-Lam Ng, Albert Kwok-Hung Kwan, Leo Gu Li. Packing and film thickness theories for the mix design of high-performance concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 759-781.
[2] Chun-ping Gu, Guang Ye, Wei Sun. A review of the chloride transport properties of cracked concrete: experiments and simulations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 81-92.
[3] Kah Yen Foong, U. Johnson Alengaram, Mohd Zamin Jumaat, Kim Hung Mo. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 59-69.
[4] Zhi Wang, Xian-yu Jin, Nan-guo Jin, Xiang-lin Gu, Chuan-qing Fu. Cover cracking model in reinforced concrete structures subject to rebar corrosion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(7): 496-507.
[5] Chi Wang, Yong-fu Xu, Ping Dong. Working characteristics of concrete-cored deep cement mixing piles under embankments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 419-431.
[6] Qiang Xu, Jian-yun Chen, Jing Li, Hong-yuan Yue. A study on the contraction joint element and damage constitutive model for concrete arch dams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 208-218.
[7] Long-bang Qing, Wen-ling Tian, Juan Wang. Predicting unstable toughness of concrete based on initial toughness criterion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 138-148.
[8] Shi-lang Xu, Ling-hua Shen, Ji-yang Wang, Ye Fu. High temperature mechanical performance and micro interfacial adhesive failure of textile reinforced concrete thin-plate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 31-38.
[9] Danial Behnia, Kaveh Ahangari, Ali Noorzad, Sayed Rahim Moeinossadat. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 589-602.
[10] Hui Xu, Yu-xi Zhao, Lei Cui, Bi Xu. Sulphate attack resistance of high-performance concrete under compressive loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 459-468.
[11] Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu. Coupled elasto-plasticity damage constitutive models for concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 256-267.
[12] Hui Liu, Ming-hua He, Yu-qi Luan, Jia Guo, Lu-lu Liu. A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 856-866.
[13] Mehmet Baran, Merve Aktas. Occupant friendly seismic retrofit by concrete plates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 789-804.
[14] Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li. Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 778-788.
[15] Mykolas Daugevi?ius, Juozas Valivonis, Gediminas Mar?iukaitis. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 571-583.