Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2006, Vol. 7 Issue (11): 7-    DOI: 10.1631/jzus.2006.A1839
    
Fatigue reliability analysis of fixed offshore structures: A first passage problem approach
MADHAVAN Pillai T.M., VEENA G.
Department of Civil Engineering, National Institute of Technology, Calicut 673601, India
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper describes a methodology for computation of reliability of members of fixed offshore platform structures, with respect to fatigue. Failure criteria were formulated using fracture mechanics principle. The problem is coined as a “first passage problem”. The method was illustrated through application to a typical plane frame structure. The fatigue reliability degradation curve established can be used for planning in-service inspection of offshore platforms. A very limited parametric study was carried out to obtain insight into the effect of important variables on the fatigue reliability.

Key wordsReliability      Fatigue      Fracture mechanics      Offshore structures     
Received: 08 March 2006     
CLC:  TU528.57  
Cite this article:

MADHAVAN Pillai T.M., VEENA G.. Fatigue reliability analysis of fixed offshore structures: A first passage problem approach. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(11): 7-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.A1839     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2006/V7/I11/7

[1] Cao Wang, Quan-wang Li, Long Pang, A-ming Zou. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 677-688.
[2] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[3] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[4] Cao Wang, Quan-wang Li, A-ming Zou, Long Zhang. A realistic resistance deterioration model for time-dependent reliability analysis of aging bridges[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 513-524.
[5] Shan-qin Hou, Jin-quan Xu. Relationship among S-N curves corresponding to different mean stresses or stress ratios[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 885-893.
[6] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[7] Zhong-ying Han, Xiao-guang Huang, Yu-guang Cao, Jin-quan Xu. A nonlinear cumulative evolution model for corrosion fatigue damage[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 447-453.
[8] Devi Chandra, Judha Purbolaksono, Yusoff Nukman, Haw-ling Liew, Singh Ramesh, Mohsen-abdel Hassan. Fatigue growth of a surface crack in a V-shaped notched round bar under cyclic tension[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 873-882.
[9] P. W. Chan, Y. F. Lee. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 469-481.
[10] Chuan-xiang Zheng, Liang Wang, Rong Li, Zong-xin Wei, Wei-wei Zhou. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 393-400.
[11] Cun-jian Miao, Jin-yang Zheng, Xiao-zhe Gao, Ze Huang, A-bin Guo, Du-yi Ye, Li Ma. Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 31-37.
[12] Joo-teck Jeffrey Kueh, Tarlochan Faris. Finite element analysis on the static and fatigue characteristics of composite multi-leaf spring[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(3): 159-164.
[13] Xin-qian Zheng, Tao Du, Yang-jun Zhang. Prediction of thermal fatigue life of a turbine nozzle guide vane[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 214-222.
[14] Ping Tan, Wei-ting He, Jia Lin, Hong-ming Zhao, Jian Chu. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 926-935.
[15] Sheng Bao, Wei-liang Jin, Ming-feng Huang. Mechanical and magnetic hysteresis as indicators of the origin and inception of fatigue damage in steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(8): 580-586.