Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2006, Vol. 7 Issue (5 ): 1-    DOI: 10.1631/jzus.2006.A0657
    
RTP payload format for H.264/SVC scalable video coding
Wenger Stephan, Wang Ye-kui, Hannuksela Miska M.
Nokia Research Center, Tampere 33721, Finland
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, including the design criteria, use cases, signaling and payload structure.

Key wordsH.264      Advanced video coding (AVC)      Scalable video coding (SVC)      Scalability      Real-time transport protocol (RTP)      Packetization     
Received: 03 December 2005     
CLC:  TN919.8  
Cite this article:

Wenger Stephan, Wang Ye-kui, Hannuksela Miska M.. RTP payload format for H.264/SVC scalable video coding. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 1-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.A0657     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2006/V7/I5 /1

[1] Hu WEI, Tao LIN, Zheng-hui LIN. Parallel processing architecture of H.264 adaptive deblocking filters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1160-1168.
[2] Byeongdu LA, Minyoung EOM, Yoonsik CHOE. Dominant edge direction based fast intra mode decision in the H.264/AVC encoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 767-777.
[3] Kai HUANG, Xiao-lang YAN, Sang-il HAN, Soo-ik CHAE, Ahmed A. JERRAYA, Katalin POPOVICI, Xavier GUERIN, Lisane BRISOLARA, Luigi CARRO. Gradual refinement for application-specific MPSoC design from Simulink model to RTL implementation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(2): 151-164.
[4] Gui-xu LIN, Shi-bao ZHENG. Perceptual importance analysis for H.264/AVC bit allocation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(2): 225-231.
[5] Jun-yan HUO, Yi-lin CHANG, Hai-tao YANG, Shuai WAN. Color compensation for multi-view video coding based on diversity of cameras[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1631-1637.
[6] Bu Jia-Jun, Mo Lin-Jian, Chen Chun, Yang Zhi. Fast mode decision algorithm for spatial resolutions down-scaling transcoding to H.264[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 70-75.
[7] Zhou Jin, Xiong Hong-Kai, Song Li, Yu Song-Yu. Resynchronization and remultiplexing for transcoding to H.264/AVC[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 76-81.
[8] Hillestad Odd Inge, Jetlund Ola, Perkis Andrew. RTP-based broadcast streaming of high definition H.264/AVC video: An error robustness evaluation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 19-26.
[9] Lee Tien-Hsu, Wang Jong-Tzy, Chen Jhih-Bin, Chang Pao-Chi. An error resilient scheme for H.264 video coding based on distortion estimated mode decision and nearest neighbor error concealment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 34-40.
[10] Liao Ning, Yan Dan, Quan Zi-Yi, Men Ai-Dong. Content-adaptive robust error concealment for packet-lossy H.264 video streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 41-47.
[11] Liu Qiong, Hu Rui-Min, Zhu Li, Zhang Xin-Chen, Han Zhen. Improved fast intra prediction algorithm of H.264/AVC[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 101-105.
[12] Feng Shun, Er Gui-Hua, Dai Qiong-Hai, Liu Ye-Bin. An optimal quality adaptation mechanism for end-to-end FGS video FGS video transmission[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 119-124.
[13] Gong An, Ding Gui-Guang, Dai Qiong-Hai, Lin Chuang. BulkTree: An overlay network architecture for live media streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 125-130.
[14] YIN Ming, WANG Hong-yuan. A rate control scheme for H.264 video under low bandwidth channel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(6 ): 9-.
[15] Thang Truong Cong, Kim Young Suk, Ro Yong Man, Kang Jungwon, Kim Jae-gon. SVC bitstream adaptation in MPEG-21 multimedia framework[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 12-.