Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2004, Vol. 5 Issue (3): 350-352    DOI: 10.1631/jzus.2004.0350
Mathematics     
Random quadralinear forms and schur product on tensors
MA Zhi-hao, WANG Cheng, HOU Li-ying
Department of Mathematics, Zhejang University, Hangzhou 310027, China; Ningbo Institute of Technology, Zhejiang University, Ningbo 315104, China; Radio and TV University, Daqing 163311, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In this work, we made progress on the problem that lr⊗lp⊗lq is a Banach algebra under schur product. Our results extend Tonge\'s results. We also obtained estimates for the norm of the random quadralinear form A:lrM×lpN×lqK×lsH→C, defined by: A(ei, ej, ek, es)=aijks, where the (aijks)\'s are uniformly bounded, independent, mean zero random variables. We proved that under some conditions lr⊗lp⊗lq⊗ls is not a Banach algebra under schur product.

Key wordsRandom tensors      Schur product      Banach algebra     
Received: 13 January 2003     
CLC:  O177.5  
  O211  
Cite this article:

MA Zhi-hao, WANG Cheng, HOU Li-ying. Random quadralinear forms and schur product on tensors. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(3): 350-352.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2004.0350     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2004/V5/I3/350

No related articles found!