Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (4): 570-577    DOI: 10.1631/FITEE.1500371
Regular Paper     
使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证
Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar
Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator
Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar
Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur 713209, India; Department of Electrical Engineering, National Institute of Technology, Durgapur 713209, India
 全文: PDF 
摘要: 概要:本研究进行了微带贴片天线线性阵列的优化设计。通过猫群算法(Cat swarm optimization, CSO)优化天线阵列辐射方向图的各控制参数。通过优化每个单元的激励电流权重和阵元间隙获得各向同性天线单元阵列的最佳辐射方向图。以12、16和20单元的天线阵列为例,运用MATLAB进行阵列优化设计,采用CST-MWS对设计结果进行仿真验证。由仿真结果可见,CSO能给出微带贴片天线线性阵列的最优设计。
关键词: 贴片天线线性天线阵列猫群优化(CSO)旁瓣水平(SLL)    
Abstract: In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are designed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.
Key words: Patch antenna    Linear antenna array    Cat swarm optimization (CSO)    Side lobe level (SLL)
收稿日期: 2015-10-30 出版日期: 2017-04-12
CLC:  TN957.2  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Gopi Ram
Durbadal Mandal
Sakti Prasad Ghoshal
Rajib Kar

引用本文:

Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500371        http://www.zjujournals.com/xueshu/fitee/CN/Y2017/V18/I4/570

1 Ansari, J.A., Mishra, A., Yadav, N.P., et al., 2010. Analysis of pair of L-shaped slot loaded patch antenna for WLAN application. Int. Conf. on Power Control and Embedded Systems, p.1-5.
doi: 10.1109/ICPCES.2010.5698691
2 Artemenko, A., Mozharovskiy, A., Sevastyanov, A., et al., 2015. Electronically beam steerable lens antenna for 71-76/81-86 GHz backhaul applications. IEEE MTT-S Int. Microwave Symp., p.1-4.
doi: 10.1109/MWSYM.2015.7166971
3 Aslam, A., Bhatti, F.A., 2009. Matching technique for microstrip patch antenna using GCPW feed. Int. Conf. on Emerging Technologies, p.66-69.
doi: 10.1109/ICET.2009.5353200
4 Balanis, C.A., 2005. Antenna Theory: Analysis and Design. John Willey & Sons, New York.
5 Blank, S.J., Hutt, M.F., 2005. On the empirical optimization of antenna arrays. IEEE Antennas Propag. Mag., 47(2): 58-67.
doi: 10.1109/MAP.2005.1487780
6 CST, 2013. CST Microwave Studio User’s Manual.
7 Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress Evolutionary Computation, p.81-86.
doi: 10.1109/CEC.2001.934374
8 Ghatak, R., Karmakar, A., Poddar, D.R., 2015. Evolutionary optimization of Haferman carpet fractal patterned antenna array. Int. J. RF Microw. Comput.-Aid. Eng., 25(8):719-729.
doi: 10.1002/mmce.20911
9 Güney, K., Akdaǧli, A., 2001. Null steering of linear antenna arrays using a modified tabu search algorithm. Progr. Electromagn. Res., 33:167-182.
doi: 10.2528/PIER00121402
10 Guo, H., Guo, C., Ding, J., 2015. Pencil beam pattern synthesis of subarrayed planar array. Int. J. RF Microw. Comput.-Aid. Eng., 25(1):56-65.
doi: 10.1002/mmce.20823
11 Haraz, O.M., Sebak, A.R., Alshebeili, S.A., 2015. Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications. Int. J. RF Microw. Comput.-Aid. Eng., 25(3):185-193.
doi: 10.1002/mmce.20848
12 Hardel, G.R., Yallaparagada, N.T., Mandal, D., et al., 2011. Introducing deeper nulls in time modulated linear symmetric antenna array using real coded genetic alorithm. IEEE Symp. on Computers and Informatics, p.249-254.
doi: 10.1109/ISCI.2011.5958922
13 Hassan, E.E., Ragheb, H.A., 2012. Sidelobes level reduction using spatial optimization of the array factor. IEEE Antennas Wirel. Propag. Lett., 11:756-759.
doi: 10.1109/LAWP.2012.2202629
14 Haupt, R.L., 1997. Phase-only adaptive nulling with a genetic algorithm. IEEE Trans. Antennas Propag., 45(6):1009-1015.
doi: 10.1109/8.585749
15 Haupt, R.L., Werner, D.H., 2006. Genetic Algorithms in Electromagnetics. John Wiley & Sons.
doi: 10.1002/047010628X
16 Hoivik, N., Ramadoss, R., 2009. MEMS devices for antenna applications. In: Liu, D., Gaucher, B., Pfeiffer, U., et al. (Eds.), Advanced Millimeter-Wave Technologies: Antennas, Packaging and Circuits. Wiley, p.483-536.
doi: 10.1002/9780470742969.ch12
17 Joshi, J.G., Pattnaik, S.S., Devi, S., 2012. Metamaterial embedded wearable rectangular microstrip patch antenna. Int. J. Antennas Propag., 2012:974315.
doi: 10.1155/2012/974315
18 Kennedy, J., Eberhart, R.C., 2001. Swarm Intelligence. Morgan Kaufmann, San Francisco, CA.
19 Koziel, S., Ogurtsov, S., 2015. Phase-spacing optimization of linear microstrip antenna arrays using simulation-based surrogate superposition models. Int. J. RF Microw. Comput.-Aid. Eng., 25(6):536-547.
doi: 10.1002/mmce.20890
20 Krous, J.D., 1950. Antenna. McGraw-Hill, New York.
21 Liu, Y., Jiao, Y.C., Zhang, Y.M., 2015. A novel hybrid invasive weed optimization algorithm for pattern synthesis of array antennas. Int. J. RF Microw. Comput.-Aid. Eng., 25(2):154-163.
doi: 10.1002/mmce.20844
22 Mandal, D., Bhattacharjee, A.K., Ghoshal, S.P., 2009. Comparative optimal designs of non-uniformly excited concentric circular antenna array using evolutionary optimization techniques. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.619-624.
doi: 10.1109/ICETET.2009.54
23 Mangaraj, B.B., Saha Misra, I., Sanyal, S.K., 2013. Application of bacteria foraging algorithm in designing log periodic dipole array for entire UHF TV spectrum. Int. J. RF Microw. Comput.-Aid. Eng., 23(2):157-171.
doi: 10.1002/mmce.20661
24 Mouhamadou, M., Vaudon, P., 2007. Complex weight control of array pattern nulling. Int. J. RF Microw. Comput.-Aid. Eng., 17(3):304-310.
doi: 10.1002/mmce.20224
25 Panduro, M.A., Brizuela, C.A., Balderas, L.I., et al., 2009a. A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Progr. Electromagn. Res. B, 13:171-186.
doi: 10.2528/PIERB09011308
26 Panduro, M.A., Reyna, A., Camacho, J., 2009b. Design of scannable linear arrays with amplitude and phase optimization for maximum side lobe level reduction. Int. J. Electron., 96(3): 323-329.
doi: 10.1080/00207210802613915
27 Park, J., Wang, Y., Itoh, T., 2003. A 60 GHz integrated antenna array for high-speed digital beamforming applications. IEEE MTT-S Int. Microwave Symp. Digest, p.1677-1680.
doi: 10.1109/MWSYM.2003.1210461
28 Park, M.Y., Eom, H.J., Park, Y.B., 2005. Coupling between coaxially fed monopoles in a parallel-plate waveguide. IEEE Trans. Antennas Propag., 53(9):3109-3112.
doi: 10.1109/TAP.2005.854546
29 Ram, G., Mandal, D., Ghoshal, S.P., et al., 2012. Minimization of side lobe of optimized uniformly spaced and non-uniform exited time modulated linear antenna arrays using genetic algorithm. LNCS, 7677:451-458.
doi: 10.1007/978-3-642-35380-2_53
30 Ram, G., Mandal, D., Kar, R., et al., 2015a. Circular and concentric circular antenna array synthesis using cat swarm optimization. IETE Techn. Rev., 32(3):204-217.
doi: 10.1080/02564602.2014.1002543
31 Ram, G., Mandal, D., Kar, R., et al., 2015b. Opposition-based BAT algorithm for optimal design of circular and concentric circular arrays with improved far-field radiation characteristics. Int. J. Numer. Model. Electron. Netw. Dev. Fields, in press.
doi: 10.1002/jnm.2087
32 Ram, G., Mandal, D., Kar, R., et al., 2015c. Cat swarm optimization as applied to time-modulated concentric circular antenna array: analysis and comparison with other stochastic optimization methods. IEEE Trans. Antennas Propag., 63(9):4180-4183.
doi: 10.1109/TAP.2015.2444439
33 Reddy, M.J., Kumar, D.N., 2007. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim., 39(1):49-68.
doi: 10.1080/03052150600930493
34 Simon, R., Whinnery, J.R., van Duzer, T., 1994. Fields and Waves in Communication Electronics. John Wiley & Sons, Canada.
35 Singh, M.D., Kosta, S.P., Upadhyaya, D.R., et al., 1971. On the theory of axial mode helix. IETE J. Res., 17(3):95-97.
doi: 10.1080/03772063.1971.11486742
36 Stutzman, W.L., Thiele, G.A., 1998. Antenna Theory and Design. John Wiley & Sons.
37 Sun, J., Sun, W., Jiang, T., et al., 2005. Directive electromagnetic radiation of a line source scattered by a conducting cylinder coated with left-handed metamaterial. Microw. Opt. Technol. Lett., 47(3):274-279.
doi: 10.1002/mop.21145
No related articles found!