Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (12): 1320-1330    DOI: 10.1631/FITEE.1500297
    
运用支持向量机的稳健智能音频水印设计
Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour
Department of Computer Engineering, Dezfoul Branch, Islamic Azad University, Dezfoul, Iran; Department of Computer Engineering, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran; Young Researchers and Elite Club, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran
A robust intelligent audio watermarking scheme using support vector machine
Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour
Department of Computer Engineering, Dezfoul Branch, Islamic Azad University, Dezfoul, Iran; Department of Computer Engineering, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran; Young Researchers and Elite Club, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran
 全文: PDF 
摘要: 概要:信息技术和计算机网络的快速发展引发了数字域数据传输的广泛使用。然而,如何保护数据免于非授权复制与分发行为也是数据所有者们所面临的主要挑战。数字水印技术作为缓解导致系统效率下降潜在挑战一种可靠保护方法,逐渐被人们所认同数字音频水印应当能以人耳不能察觉的方式保持主信号的质量,也应当能在潜在的攻击前保持足够的稳健型。传统音频水印技术存在的一个主要问题是使用非智能解码器--此类解码器在提取数字水印时仅使用特定的规则集。本文提出了一种稳健、智能的音频水印方法,该方法有效地结合了奇异值分解(Singular value decomposition, SVD)和支持向量机(Support vector machine,SVM)技术。该方法通过调整奇异值实现水印数据嵌入,又通过SVM智能解码器实现水印提取。此外,通过学习噪声信号的有害效应,该解码器能够有效的提取水印。不同条件下的一系列实验验证了所述设计的性能。实验结果表明,与传统方法相比,本文方法能够提供更好的不可见性、更高的鲁棒性、更低的负载和更高的操作效率。
关键词: 音频水印版权保护奇异值分解机器学习支持向量机    
Abstract: Rapid growth in information technology and computer networks has resulted in the universal use of data transmission in the digital domain. However, the major challenge faced by digital data owners is protection of data against unauthorized copying and distribution. Digital watermark technology is starting to be considered a credible protection method to mitigate the potential challenges that undermine the efficiency of the system. Digital audio watermarking should retain the quality of the host signal in a way that remains inaudible to the human hearing system. It should be sufficiently robust to be resistant against potential attacks. One of the major deficiencies of conventional audio watermarking techniques is the use of non-intelligent decoders in which some sets of specific rules are used for watermark extraction. This paper presents a new robust intelligent audio watermarking scheme using a synergistic combination of singular value decomposition (SVD) and support vector machine (SVM). The methodology involves embedding a watermark data by modulating the singular values in the SVD transform domain. In the extraction process, an intelligent detector using SVM is suggested for extracting the watermark data. By learning the destructive effects of noise, the detector in question can effectively retrieve the watermark. Diverse experiments under various conditions have been carried out to verify the performance of the proposed scheme. Experimental results showed better imperceptibility, higher robustness, lower payload, and higher operational efficiency, for the proposed method than for conventional techniques.
Key words: Audio watermarking    Copyright protection    Singular value decomposition (SVD)    Machine learning    Support vector machine (SVM)
收稿日期: 2015-09-10 出版日期: 2016-12-13
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Mohammad Mosleh
Hadi Latifpour
Mohammad Kheyrandish
Mahdi Mosleh
Najmeh Hosseinpour

引用本文:

Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour. A robust intelligent audio watermarking scheme using support vector machine. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1320-1330.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500297        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I12/1320

[1] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[2] G. R. Brindha, P. Swaminathan, B. Santhi. 一种观点挖掘新词语权重过程性能分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.
[3] Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain. 基于体位特征使用混杂模型预测血压对于无支撑后背的反应[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 474-485.
[4] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. 基于Kinect的实时面部情感识别[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[5] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. 基于非线性支持向量机和遗传算法的移动ECG质量评估[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[6] Kai-sheng Luo, Zheng Shi, Xiao-lang Yan, Zhen Geng. 基于支持向量机的反向光刻版图重定向算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 390-400.
[7] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. 用于三维CAD模型分类的深度学习方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[8] Li Chen, Ying-chun Yang, Zhao-hui Wu. 用于情感说话人识别的精细失真特征检测与修正[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 903-916.