Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (9): 954-961    DOI: 10.1631/FITEE.1500303
    
一款基于改进的步进式译码算法的流水线架构RS码译码器
Xing-ru Peng, Wei Zhang, Yan-yan Liu
School of Electronic and Information Engineering, Tianjin University, Tianjin 300072, China; College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
A pipelined Reed-Solomon decoder based on a modified step-by-step algorithm
Xing-ru Peng, Wei Zhang, Yan-yan Liu
School of Electronic and Information Engineering, Tianjin University, Tianjin 300072, China; College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
 全文: PDF 
摘要: 摘要:基于改进的步进式译码算法,我们为超宽带系统设计了一款流水线架构的Reed-Solomon(RS)码译码器。为了减小复杂度,改进的步进式译码算法将传统步进式译码算法中冗余的两部分进行了结合。此外,采用流水线架构,使得所设计的译码器以最小时延获得最大吞吐率。因此,对于RS(23,17)码,我们所设计的译码器面积比ME(modified Euclidean)架构和pDCME(pipelined degree-computationless modified Euclidean)架构分别减少了42.5%和24.4%。此外,与传统步进式译码器相比,我们设计的译码器能减少11.3%的面积,且关键路径延迟更低。
关键词: Reed-Solomon码步进式译码算法超宽带流水线架构    
Abstract: We propose a pipelined Reed-Solomon (RS) decoder for an ultra-wideband system using a modified step-by-step algorithm. To reduce the complexity, the modified step-by-step algorithm merges two cases of the original algorithm. The pipelined structure allows the decoder to work at high rates with minimum delay. Consequently, for RS(23,17) codes, the proposed architecture requires 42.5% and 24.4% less area compared with a modified Euclidean architecture and a pipelined degree-computationless modified Euclidean architecture, respectively. The area of the proposed decoder is 11.3% less than that of the previous step-by-step decoder with a lower critical path delay.
Key words: Reed-Solomon codes    Step-by-step algorithm    Ultra-wideband    Pipelined structure
收稿日期: 2015-09-20 出版日期: 2016-08-31
CLC:  TN79  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Xing-ru Peng
Wei Zhang
Yan-yan Liu

引用本文:

Xing-ru Peng, Wei Zhang, Yan-yan Liu. A pipelined Reed-Solomon decoder based on a modified step-by-step algorithm. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 954-961.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500303        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I9/954

[1] Mohammad Hossein Moaiyeri, Shima Sedighiani, Fazel Sharifi, Keivan Navi. 碳纳米管场效应管四进制全加器设计与分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1056-1066.
[2] Xue Liu, Qing-xu Deng, Bo-ning Hou, Ze-ke Wang. High-speed, fixed-latency serial links with Xilinx FPGAs[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 153-160.
[3] Lin-rong Xiao, Xie-xiong Chen, Shi-yan Ying. Design of dual-edge triggered flip-flops based on quantum-dot cellular automata[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 385-392.
[4] Xiang Wang, Yong Ding, Ming-yu Liu, Xiao-lang Yan. Efficient implementation of a cubic-convolution based image scaling engine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 743-753.
[5] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.