Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (11): 1176-1185    DOI: 10.1631/FITEE.1601203
    
基于时域滤波和关联策略的红外慢速目标检测
Jing-li Gao, Cheng-lin Wen, Zhe-jing Bao, Mei-qin Liu
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Software Engineering, Pingdingshan University, Pingdingshan 467000, China
Detecting slowly moving infrared targets using temporal filtering and association strategy
Jing-li Gao, Cheng-lin Wen, Zhe-jing Bao, Mei-qin Liu
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Software Engineering, Pingdingshan University, Pingdingshan 467000, China
 全文: PDF 
摘要: 概要:红外慢速目标的一些独特特性,例如像素少,不成形的边缘信息,低信杂比和低速等,使得它们的检测异常困难,而当被淹没在复杂背景中时尤甚。为了解决这一问题,根据时域目标检测和关联策略,本文提出了一种有效的红外目标检测算法。首先,建立一种时域目标检测模型对疑似目标进行分割,该模型主要包含三个阶段,时域滤波,时域目标融合和交叉积滤波;然后提出一种图模型,来关联不同时刻获取的疑似目标。这种关联依赖于目标的运动和表观特征,可进行多次关联操作获取目标轨迹,并据此区分真实目标和由噪声或杂波引起的虚假目标。实验结果表明本文提出的方法能够准确、鲁棒地检测复杂背景下的红外慢速目标,且与几种基准方法相比具有优越的检测性能。
关键词: 时域目标检测慢速移动目标图匹配目标关联    
Abstract: The special characteristics of slowly moving infrared targets, such as containing only a few pixels, shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when immersed in complex backgrounds. To cope with this problem, we propose an effective infrared target detection algorithm based on temporal target detection and association strategy. First, a temporal target detection model is developed to segment the interested targets. This model contains mainly three stages, i.e., temporal filtering, temporal target fusion, and cross-product filtering. Then a graph matching model is presented to associate the targets obtained at different times. The association relies on the motion characteristics and appearance of targets, and the association operation is performed many times to form continuous trajectories which can be used to help disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly, and has superior detection performance in comparison with several recent methods.
Key words: Temporal target detection    Slowly moving targets    Graph matching    Target association
收稿日期: 2016-04-25 出版日期: 2016-11-07
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jing-li Gao
Cheng-lin Wen
Zhe-jing Bao
Mei-qin Liu

引用本文:

Jing-li Gao, Cheng-lin Wen, Zhe-jing Bao, Mei-qin Liu. Detecting slowly moving infrared targets using temporal filtering and association strategy. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1176-1185.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1601203        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I11/1176

[1] Aftab Ahmed Chandio, Nikos Tziritas, Fan Zhang, Ling Yin, Cheng-Zhong Xu. 基于云计算的自适应可调节GPS轨迹地图匹配策略[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1305-1319.