Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (9): 732-743    DOI: 10.1631/FITEE.1400414
    
网络系统的端到端延时分析
Jie Shen, Wen-bo He, Xue Liu, Zhi-bo Wang, Zhi Wang, Jian-guo Yao
Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; School of Computer Science, McGill University, Montreal H3A0E9, Canada; School of Computer, Wuhan University, Wuhan 430072, China; Su zhou Institute of Wuhan University, Suzhou 215000, China; School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
End-to-end delay analysis for networked systems
Jie Shen, Wen-bo He, Xue Liu, Zhi-bo Wang, Zhi Wang, Jian-guo Yao
Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; School of Computer Science, McGill University, Montreal H3A0E9, Canada; School of Computer, Wuhan University, Wuhan 430072, China; Su zhou Institute of Wuhan University, Suzhou 215000, China; School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF 
摘要: 目的:面向大规模复杂网络,提出一种有效的端到端延时的分析方法,保障网络服务性能。
创新点:基于频域分析方法提出一种新的网络延时分析方法,具有高效率的特点。
方法:首先,将网络系统的延时从时域转换到频域,并用信号流图建模(图1)。然后,用克莱姆法则或者梅森增益公式计算信号流图模型的传递函数。接着,分析传递函数的脉冲响应和阶跃响应得到系统的端到端延时的概率密度函数和概率分布函数(图2)。最后,用该方法分析两个实际例子。包括:第一,用该方法得到网络中的瓶颈链路(图3、4);第二,用该方法分析网络通信协议(图6)。
结论:针对大规模复杂网络,提出基于频域分析的网络延时分析方法,这种方法是有效的。
关键词: 网络系统端到端延时分布    
Abstract: End-to-end delay measurement has been an essential element in the deployment of real-time services in networked systems. Traditional methods of delay measurement based on time domain analysis, however, are not efficient as the network scale and the complexity increase. We propose a novel theoretical framework to analyze the end-to-end delay distributions of networked systems from the frequency domain. We use a signal flow graph to model the delay distribution of a networked system and prove that the end-to-end delay distribution is indeed the inverse Laplace transform of the transfer function of the signal flow graph. Two efficient methods, Cramer’s rule-based method and the Mason gain rule-based method, are adopted to obtain the transfer function. By analyzing the time responses of the transfer function, we obtain the end-to-end delay distribution. Based on our framework, we propose an efficient method using the dominant poles of the transfer function to work out the bottleneck links of the network. Moreover, we use the framework to study the network protocol performance. Theoretical analysis and extensive evaluations show the effectiveness of the proposed approach.
Key words: Networked system    End-to-end    Delay distribution
收稿日期: 2014-12-04 出版日期: 2015-09-06
CLC:  TP393  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jie Shen
Wen-bo He
Xue Liu
Zhi-bo Wang
Zhi Wang
Jian-guo Yao

引用本文:

Jie Shen, Wen-bo He, Xue Liu, Zhi-bo Wang, Zhi Wang, Jian-guo Yao. End-to-end delay analysis for networked systems. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 732-743.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400414        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I9/732

[1] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM:基于动态分组的移动P2P网络信任模型[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 559-569.
[2] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. 流追踪:一种软件定义网络中低开销的时延测量和路径追踪方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 206-219.
[3] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. 基于ARIMA和Kalman滤波的道路交通状态实时预测[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302.
[4] Da-fang Zhang, Dan Chen, Yan-biao Li, Kun Xie, Tong Shen. 虚拟化路由器中基于融合再拆分的多表压缩及快速重构机制[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1266-1274.
[5] Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu. 一种基于博弈论的无线接入网中缓存资源共享方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1253-1265.
[6] Reza Sookhtsaraei, Javad Artin, Ali Ghorbani, Ahmad Faraahi, Hadi Adineh. 基于位置的数据云复制管理器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1275-1286.
[7] Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG. 移动目标防御:现状及特征[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1122-1153.
[8] Guang-jia Song, Zhen-zhou Ji. 匿名地址解析模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1044-1055.
[9] Adel Khosravi, Yousef Seifi Kavian. 一种用于判断分布式网络中故障节点的自主故障诊断及决策算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 885-896.
[10] Mingjie Feng, Shiwen Mao, Tao Jiang. 利用软件定义网络结构提升未来无线通信网络性能的方法研究与展望[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 606-619.
[11] Gang Xiong, Yu-xiang Hu, Le Tian, Ju-long Lan, Jun-fei Li, Qiao Zhou. 一种基于改进量子遗传算法的虚拟服务部署方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 661-671.
[12] En-zhong Yang, Lin-kai Zhang, Zhen Yao, Jian Yang. 软件定义网络中采用可伸缩视频组播的视频会议系统[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 672-681.
[13] Peng Xiao, Zhi-yang Li, Song Guo, Heng Qi, Wen-yu Qu, Hai-sheng Yu. 一种K自适应的广域网SDN控制器部署方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 620-633.
[14] Shui-qing Gong, Jing Chen, Qiao-yan Kang, Qing-wei Meng, Qing-chao Zhu, Si-yi Zhao. 面向虚拟SDN网络的高效协调映射算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 701-716.
[15] Bo Liu, Ming Chen, Bo Xu, Hui Hu, Chao Hu, Qing-yun Zuo, Chang-you Xing. 一种基于OpenFlow性能驱动的数据中心多路径转发方案[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 647-660.