Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (6): 466-473    DOI: 10.1631/FITEE.1400345
    
AGCD:一种基于最大公因子逼近的鲁棒周期分析方法
Juan Yu, Pei-zhong Lu
School of Computer Science and Technology, Fudan University, Shanghai 200433, China
AGCD: a robust periodicity analysis method based on approximate greatest common divisor
Juan Yu, Pei-zhong Lu
School of Computer Science and Technology, Fudan University, Shanghai 200433, China
 全文: PDF 
摘要: 目的:设计较现有方法鲁棒性更佳、效率更高的周期分析方法,从稀疏且含有噪声的周期事件观测数据中估算周期。
创新点:本文首次将最大公因子逼近算法应用于周期估算问题。该算法在处理稀疏且含有噪声的数据方面具有效率高、性能稳定、鲁棒性好的特点。
方法:首先,确定观测数据的噪声空间。本文根据观测数据自适应获取噪声上下限。然后,对观测数据进行预处理,消除其中包含的未知相位参数,并对预处理后的数据逐对以噪声穷举方式搜索所有可能的最大公因子,即采用公因子逼近的方法搜索候选周期,同时统计这些候选周期在整个搜索过程中出现的频率。搜索完成后,根据候选周期出现频率估算周期值,即选择出现频率最高的候选周期为估算周期。最后,采用仿真数据验证AGCD方法在处理稀疏且含有噪声的观测数据方面的鲁棒性和高效性。
结论:(1)AGCD算法效率高,因其以穷举搜索噪声空间方式估算周期。而现有方法是以穷举周期的方式估算周期,噪声空间相比周期的取值空间小很多。所以,AGCD方法在效率上有很大提升。(2)AGCD能以更少的观测数据获得与其他方法近似或更高的准确率。(3)AGCD性能(准确性和效率)较其他方法更加稳定且受周期值影响更小。(4)AGCD方法无需利用有关周期取值区间的先验知识,相比于其他方法适用性更强。
关键词: 周期性分析周期估算稀疏噪声AGCD    
Abstract: Periodicity is one of the most common phenomena in the physical world. The problem of periodicity analysis (or period detection) is a research topic in several areas, such as signal processing and data mining. However, period detection is a very challenging problem, due to the sparsity and noisiness of observational datasets of periodic events. This paper focuses on the problem of period detection from sparse and noisy observational datasets. To solve the problem, a novel method based on the approximate greatest common divisor (AGCD) is proposed. The proposed method is robust to sparseness and noise, and is efficient. Moreover, unlike most existing methods, it does not need prior knowledge of the rough range of the period. To evaluate the accuracy and efficiency of the proposed method, comprehensive experiments on synthetic data are conducted. Experimental results show that our method can yield highly accurate results with small datasets, is more robust to sparseness and noise, and is less sensitive to the magnitude of period than compared methods.
Key words: Periodicity analysis    Period detection    Sparsity    Noise    Approximate greatest common divisor (AGCD)
收稿日期: 2014-10-09 出版日期: 2015-06-04
CLC:  TP301.6  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Juan Yu
Pei-zhong Lu

引用本文:

Juan Yu, Pei-zhong Lu. AGCD: a robust periodicity analysis method based on approximate greatest common divisor. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 466-473.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400345        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I6/466

[1] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[2] Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang. 目标跟踪中一种新的基于H滤波器的噪声统计特征估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 449-457.
[3] Xin Li, Jin Sun, Fu Xiao. 考虑设计参数扰动的芯片多元参数成品率预测算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1344-1359.
[4] Wei Xia, Ju-lei Zhu, Wen-ying Jiang, Ling-feng Zhu. 考虑输入噪声的混合调制拉格朗日明确时延估计改进算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1067-1073.
[5] Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu. 基于度量学习和子集选择的稀疏表示人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 1046-1058.
[6] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[7] Li-chun Yang, Yun-tao Qian. 基于稀疏编码的广义旁瓣抵消器语音增强算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1154-1163.