Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (12): 948-955    DOI: 10.1631/jzus.C1000148
    
Adaptive multiblock kernel principal component analysis for monitoring complex industrial processes
Ying-wei Zhang, Yong-dong Teng
MOE Key Lab of Integrated Automation of Process Industry, Northeastern University, Shenyang 110004, China
Adaptive multiblock kernel principal component analysis for monitoring complex industrial processes
Ying-wei Zhang, Yong-dong Teng
MOE Key Lab of Integrated Automation of Process Industry, Northeastern University, Shenyang 110004, China
 全文: PDF 
摘要: Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.
关键词: Recursive multiblock kernel principal component analysis (RMBPCA)Dynamic processNonlinear process    
Abstract: Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.
Key words: Recursive multiblock kernel principal component analysis (RMBPCA)    Dynamic process    Nonlinear process
收稿日期: 2010-04-13 出版日期: 2010-12-09
CLC:  TP27  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Ying-wei Zhang
Yong-dong Teng

引用本文:

Ying-wei Zhang, Yong-dong Teng. Adaptive multiblock kernel principal component analysis for monitoring complex industrial processes. Front. Inform. Technol. Electron. Eng., 2010, 11(12): 948-955.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1000148        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I12/948

[1] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. 含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.
[2] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. 含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.
[3] Xiao-yu ZHANG. 一类非仿射离散非线性系统的直接自适应模糊滑模控制[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1331-1343.
[4] Yong-chun Xie, Huang Huang, Yong Hu, Guo-qi Zhang. 先进控制方法在航天器上的应用:进展、挑战和未来发展[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 841-861.
[5] Guo-jiang Shen, Yong-yao Yang. 一种城市主干道信号动态协调控制方法及其应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 907-918.
[6] Kyong-il Kim, Hsin Guan, Bo Wang, Rui Guo, Fan Liang. 铰接车辆的主动转向控制策略研究[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 576-586.
[7] Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang. 目标跟踪中一种新的基于H滤波器的噪声统计特征估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 449-457.
[8] Jin-yi Liu, Jing-quan Tan, En-rong Mao, Zheng-he Song, Zhong-xiang Zhu. 基于比例控制的农业机械自动转向系统研究[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 458-464.
[9] Chang-bin Yu, Yin-qiu Wang, Jin-liang Shao. 基于线性二次最优化的多智能体编队控制[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 96-109.
[10] . Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 55-66.
[11] Xiao-dong Tan, Jian-lu Luo, Qing Li, Bing Lu, Jing Qiu. 基于故障演化-测试相关性可测性建模方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 848-857.
[12] Mei-qin Liu, Hai-yang Chen, Sen-lin Zhang. 一类时变时滞非线性系统的H参考跟踪控制设计[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 759-768.
[13] Shi-jin Ren, Yin Liang, Xiang-jun Zhao, Mao-yun Yang. 一种融合贝叶斯推理与LDRSKM的多模态过程监测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 617-633.
[14] Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain. 基于体位特征使用混杂模型预测血压对于无支撑后背的反应[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 474-485.
[15] Rong Zou, Zhen-ying Xu, Jin-yang Li, Fu-qiang Zhou. 铁路货车闸瓦钎故障的实时监控[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 191-204.