Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (4): 261-269    DOI: 10.1631/jzus.C0910037
    
Optimized simulated annealing algorithm for thinning and weighting large planar arrays
Peng Chen1, Bin-jian Shen2, Li-sheng Zhou2, Yao-wu Chen*,1
1 Institute of Advanced Digital Technologies and Instrumentation, Zhejiang University, Hangzhou 310027, China 2 Hangzhou Applied Acoustics Research Institute, Hangzhou 310012, China
Optimized simulated annealing algorithm for thinning and weighting large planar arrays
Peng Chen1, Bin-jian Shen2, Li-sheng Zhou2, Yao-wu Chen*,1
1 Institute of Advanced Digital Technologies and Instrumentation, Zhejiang University, Hangzhou 310027, China 2 Hangzhou Applied Acoustics Research Institute, Hangzhou 310012, China
 全文: PDF(439 KB)  
摘要: This paper proposes an optimized simulated annealing (SA) algorithm for thinning and weighting large planar arrays in 3D underwater sonar imaging systems. The optimized algorithm has been developed for use in designing a 2D planar array (a rectangular grid with a circular boundary) with a fixed side-lobe peak and a fixed current taper ratio under a narrow-band excitation. Four extensions of the SA algorithm and the procedure for the optimized SA algorithm are described. Two examples of planar arrays are used to assess the efficiency of the optimized method. The proposed method achieves a similar beam pattern performance with fewer active transducers and faster convergence ability than previous SA algorithms.
关键词: Simulated annealing (SA)Sparse planar arrays3D underwater sonar imagingBeam patternOptimization    
Abstract: This paper proposes an optimized simulated annealing (SA) algorithm for thinning and weighting large planar arrays in 3D underwater sonar imaging systems. The optimized algorithm has been developed for use in designing a 2D planar array (a rectangular grid with a circular boundary) with a fixed side-lobe peak and a fixed current taper ratio under a narrow-band excitation. Four extensions of the SA algorithm and the procedure for the optimized SA algorithm are described. Two examples of planar arrays are used to assess the efficiency of the optimized method. The proposed method achieves a similar beam pattern performance with fewer active transducers and faster convergence ability than previous SA algorithms.
Key words: Simulated annealing (SA)    Sparse planar arrays    3D underwater sonar imaging    Beam pattern    Optimization
收稿日期: 2009-01-15 出版日期: 2010-03-22
CLC:  TB56  
基金资助: Project (No. 2006AA09Z109) supported by the National High-Tech Research and Development Program (863) of China
通讯作者: Yao-wu CHEN     E-mail: cyw@mail.bme.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Peng Chen
Bin-jian Shen
Li-sheng Zhou
Yao-wu Chen

引用本文:

Peng Chen, Bin-jian Shen, Li-sheng Zhou, Yao-wu Chen. Optimized simulated annealing algorithm for thinning and weighting large planar arrays. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 261-269.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910037        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I4/261

[1] T T DHIVYAPRABHA, P SUBASHINI, M KRISHNAVENI. Synergistic fibroblast optimization: a novel nature-inspired computing algorithm[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(7): 815-833.
[2] Qiang LAN, Lin-bo QIAO, Yi-jie WANG. Stochastic extra-gradient based alternating direction methods for graph-guided regularized minimization[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(6): 755-762.
[3] Lai TENG, Zhong-he JIN. A composite optimization method for separation parameters of large-eccentricity pico-satellites[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(5): 685-698.
[4] Muhammad KAMRAN, Ehsan Ullah MUNIR. On the role of optimization algorithms in ownership-preserving data mining[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(2): 151-164.
[5] Li XIE, Yi-qun ZHANG, Jun-yan XU. Hohmann transfer via constrained optimization[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(11): 1444-1458.
[6] Xing-chen WU , Gui-he QIN , Ming-hui SUN , He YU , Qian-yi XU. Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1385-1395.
[7] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[8] Zong-feng QI, Qiao-qiao LIU, Jun WANG, Jian-xun LI. Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(12): 1991-2000.
[9] Xiao-qing ZHANG, Zheng-feng MING. An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1705-1719.
[10] Meng LI, Xi LIN, Xi-qun CHEN. A surrogate-based optimization algorithm for network design problems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1693-1704.
[11] Lan HUANG, Gui-chao WANG, Tian BAI, Zhe WANG. An improved fruit fly optimization algorithm for solving traveling salesman problem[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(10): 1525-1533.
[12] . Image meshing via hierarchical optimization[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 32-40.
[13] Saeid Arish, Ali Amiri, Khadije Noori. FICA: fuzzy imperialist competitive algorithm[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 363-371.
[14] Reza Ebrahimi, Mehdi Ehsan, Hassan Nouri. U-shaped energy loss curves utilization for distributed generation optimization in distribution networks[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(11): 887-898.
[15] Eneko Osaba, Enrique Onieva, Roberto Carballedo, Fernando Diaz, Asier Perallos, Xiao Zhang. A multi-crossover and adaptive island based population algorithm for solving routing problems[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(11): 815-821.