|
|
Efficient dynamic pruning on largest scores first (LSF) retrieval |
College of Computer, National University of Defense Technology, Changsha 410073, China |
|
Efficient dynamic pruning on largest scores first (LSF) retrieval |
Kun JIANG( ),Yue-xiang YANG |
College of Computer, National University of Defense Technology, Changsha 410073, China |
1 | Anh VN, Moffat A . Simplified similarity scoring using term ranks. 2005, Proc.28th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. 226-233. doi: 10.1145/1076034.1076075 | 2 | Anh VN, Moffat A . Pruned query evaluation using pre-computed impacts. 2006, Proc. 29th Annual ACM SIGIR Conf. on Research and Development in Information Retrieval. 372-379. doi: 10.1145/1148170.1148235 | 3 | Anh VN, Moffat A, . et al. . Index compression using 64-bit words. Softw. Pract. Exper. 2010, 40 (2): 131-147. doi: 10.1002/spe.948 | 4 | Badue C, Ribeiro-Neto B, Baeza-Yates R, et al. . Distributed query processing using partitioned inverted files. 2001, Proc. 8th Int. Symp. on String Processing and Information Retrieval. 10-20. doi: 10.1109/SPIRE.2001.989733 | 5 | Broder AZ, Carmel D, Herscovici M, . et al. . Efficient query evaluation using a two-level retrieval process. 2003, Proc. 12th Int. Conf. on Information and Knowledge Management. 426-434. doi: 10.1145/956863.956944 | 6 | Buckley C, Lewit AF . Optimization of inverted vector searches. 1985, Proc. 8th Annual Int.ACM SIGIR Conf. on Research and Development in Information Retrieval. 97-110. doi: 10.1145/253495.253515 | 7 | Büttcher S, Clarke CLA . Index compression is good, especially for random access. 2007, Proc. 16th ACM Conf. on Information and Knowledge Management. 761-770. doi: 10.1145/1321440.1321546 | 8 | Büttcher S, Clarke CLA, Cormack GV . Information Retrieval: Implementing and Evaluating Search Engines 2010, USAThe MIT Press | 9 | Chakrabarti K, Chaudhuri S, Ganti V . Intervalbased pruning for top-k processing over compressed lists. 2011, Proc. 27th Int. Conf. on Data Engineering. 709-720. doi: 10.1109/ICDE.2011.5767855 | 10 | Croft B, Metzler D, Strohman T . Search Engines: Information Retrieval in Practice 2010, USAAddison Wesley | 11 | Dean J . Challenges in building large-scale information retrieval systems: invited talk. 2009, Proc. 2nd ACM Int. Conf. on Web Search and Data Mining. 1 doi: 10.1145/1498759.1498761 | 12 | Delbru R, Campinas S, Tummarello G . Searching web data: an entity retrieval and high-performance indexing model. Web Semant. Sci. Serv. Agents World Wide Web2012, 10: 33-58. doi: 10.1016/j.websem.2011.04.004 | 13 | Dimopoulos C, Nepomnyachiy S, Suel T . Optimizing top-k document retrieval strategies for block-max indexes. 2013, Proc. 6th ACM Int. Conf. on Web Search and Data Mining. 113-122. doi: 10.1145/2433396.2433412 | 14 | Ding S, Suel T . Faster top-k document retrieval using block-max indexes. 2011, Proc. 34th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. 993-1002. doi: 10.1145/2009916.2010048 | 15 | Fontoura M, Josifovski V, Liu JH, et al. . Evaluation strategies for top-k queries over memory-resident inverted indexes. Proc. VLDB Endow, 2011, 1213-1224. | 16 | Jiang K, Yang YX . Exhaustive hybrid posting lists traversing technique. 2015, Proc. 5th Int. Conf. on Intelligence Science and Big Data Engineering. 1-11. doi: 10.1007/978-3-319-23862-3_1 | 17 | Jiang K, Song XS, Yang YX . Performance evaluation of inverted index traversal techniques. 2014, Proc. 17th Int. Conf. on Computational Science and Engineering. 1715-1720. doi: 10.1109/CSE.2014.315 | 18 | Jonassen S, Bratsberg SE . Efficient compressed inverted index skipping for disjunctive text-queries. 2011, Proc. 33rd European Conf. on Advances in Information Retrieval. 530-542. doi: 10.1007/978-3-642-20161-5_53 | 19 | Lacour P, Macdonald C, Ounis I . Efficiency comparison of document matching techniques. 2008, Proc. European Conf. on Information Retrieval. 37-46. | 20 | Lester N, Moffat A, Webber W, et al. . Spacelimited ranked query evaluation using adaptive pruning. 2005, Proc. 6th Int. Conf. on Web Information Systems Engineering. 470-477. doi: 10.1007/11581062_37 | 21 | Macdonald C, Ounis I, Tonellotto N . Upperbound approximations for dynamic pruning. ACM Trans. Inform. Syst. 2011, 29 (4): 17.1-17.28. doi: 10.1145/2037661.2037662 | 22 | Manning CD, Raghavan P, Schütze H . Introduction to Information Retrieval 2008, USA Cambridge University Press, Cambridge | 23 | Melink S, Raghavan S, Yang B, et al. . Building a distributed full-text index for the Web. 2001, Proc. 10th Int. Conf. on World Wide Web. 396-406. doi: 10.1145/371920.372095 | 24 | Moffat A, Zobel J . Self-indexing inverted files for fast text retrieval. ACM Trans. Inform. Syst. 1996, 14 (4): 349-379. doi: 10.1145/237496.237497 | 25 | Ounis I, Amati G, Plachouras V, et al. . Terrier: a high performance and scalable information retrieval platform. 2006, Proc. OSIR Workshop. 18-25. | 26 | Puppin D, Silvestri F, Perego R , et al. . Tuning the capacity of search engines: load-driven routing and incremental caching to reduce and balance the load. ACM Trans. Inform. Syst. 2010, 28(2): 5.1-5.36. doi: 10.1145/1740592.1740593 | 27 | Silvestri F, Venturini R . VSEncoding: efficient coding and fast decoding of integer lists via dynamic programming. 2010, Proc. 19th ACM Int. Conf. on Information and Knowledge Management. 1219-1228. doi: 10.1145/1871437.1871592 | 28 | Strohman T, Croft WB . Efficient document retrieval in main memory. 2007, Proc. 30th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. 175-182. doi: 10.1145/1277741.1277774 | 29 | Strohman T, Turtle H, Croft W.B . Optimization strategies for complex queries. 2005, Proc. 28th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. 219-225. doi: 10.1145/1076034.1076074 | 30 | Turtle H, Flood J . Query evaluation: strategies and optimizations. Inform. Process. Manag. 1995, 31(6): 831-850. doi: 10.1016/0306-4573(95)00020-H | 31 | Wang LD, Lin J, Metzler D . A cascade ranking model for efficient ranked retrieval. 2011, Proc. 34th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. 105-114. doi: 10.1145/2009916.2009934 | 32 | Zobel J, Moffat A . Inverted files for text search engines. ACM Comput. Surv 2006, 38(2): 6.1-6.56. doi: 10.1145/1132956.1132959 | 33 | Zukowski M, Heman S, Nes N , et al. . Super-scalar RAM-CPU cache compression. 2006, Proc. 22nd Int. Conf. on Data Engineering. 59 doi: 10.1109/ICDE.2006.150 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|