令f:I⊆R→R是一个凸函数且a, b∈I, a < b, 则有
$ f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{2}, $ | (1) |
这就是著名的Hermite-Hadamard不等式.
近年来, 众多研究者根据函数具备不同的凸性对Hermite-Hadamard型不等式进行了推广和改进[1-7].随着分数次积分的广泛应用, 不少学者开始研究涉及分数次积分的Hermite-Hadamard型不等式, 并且得到了越来越多关于分数次积分的结果[8-11].
KIRMACI[12]证明了以下与不等式(1) 左端有关联的一些结果:
引理1 令f:I*⊂R→R是区间I*上的一个可微映射(I*是I的内部), 若f′∈L[a, b], a, b∈I*, a < b, 则
$ \begin{array}{l} \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right) = \\ \;\;\;\;\;\;\;\left( {b - a} \right)\left[ {\int_0^{1/2} {tf'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} } \right. + \\ \;\;\;\;\;\;\;\left. {\int_{1/2}^0 {\left( {t - 1} \right)f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} } \right]. \end{array} $ | (2) |
根据引理1, KIRMACI证明了以下有关凸函数的3个定理.
定理1 令f:I*⊂R→R是区间I*上的可微映射, 若|f′|是区间[a, b]上的凸函数, a, b∈I*, a < b, 则
$ \begin{array}{l} \left| {\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \;\;\;\;\;\;\;\frac{{\left( {b - a} \right)}}{8}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (3) |
定理2 令f:I*⊂R→R是I*上的可微映射, 若映射
$ \begin{array}{l} \left| {\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right)} \right| \le \frac{{b - a}}{{16}}{\left( {\frac{4}{{p + 1}}} \right)^{1/p}} \times \\ \left[ {{{\left( {{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + 3{{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}} + } \right.\\ \left. {{{\left( {3{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + {{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}}} \right]. \end{array} $ | (4) |
定理3 令f:I*⊂R→R是区间I*上的可微映射.若映射
$ \begin{array}{l} \left| {\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \;\;\;\;\;\frac{{b - a}}{4}{\left( {\frac{4}{{p + 1}}} \right)^{1/p}}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (5) |
KIRMACI等[13]还证明了对于凹函数,有
定理4 令f:I*⊂R→R是区间I*上的可微映射, 且p≥1.如果|f′|p是[a, b]上的凹函数, a, b∈I*, a < b, 并且|f′|是一个线性映射, 则
$ \begin{array}{l} \left| {\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \;\;\;\;\;\;\left( {\frac{{b - a}}{8}} \right)\left( {f'\left( {a + b} \right)} \right). \end{array} $ | (6) |
为了得到新的结果, 特引入下面3个定义.
定义1[14] 若f:[0, ∞)→R, 对于x, y∈[0, ∞), λ∈[0, 1],并且对于某一固定的s∈(0, 1], 若不等式
$ f\left( {\lambda x + \left( {1 - \lambda } \right)y} \right) \le {\lambda ^s}f\left( x \right) + {\left( {1 - \lambda } \right)^s}f\left( y \right) $ |
成立, 则称函数f为第2种意义下的s-凸函数,记为f∈Ks2.若(-f)是s-凸的, 则称f是s-凹函数.
易知, 当s=1时, s-凸性即为通常意义下的凸函数.
DRAGOMIR等[15]证明了对于第2种意义下s-凸函数的Hadamard不等式的一个变式:
定理5 假设f:[0, ∞]→[0, ∞]是一个第2种意义下的s-凸函数, 其中s∈(0, 1) 且a, b∈[0, ∞), a < b.若f∈L1([a, b]), 则有
$ {2^{s - 1}}f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{{s + 1}}, $ | (7) |
常数
下面给出α(∈R+)阶左侧和右侧分数次积分的定义.
定义2 令f∈L1[a, b], α(∈R+)阶Riemann-Liouville积分Ja+αf和Jb-αf(a≥0) 分别定义为
$ J_{a + }^\alpha f\left( x \right) = \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}f\left( t \right){\rm{d}}t} ,x > a, $ |
$ J_{b - }^\alpha f\left( x \right) = \frac{1}{{\Gamma \left( \alpha \right)}}\int_x^b {{{\left( {t - x} \right)}^{\alpha - 1}}f\left( t \right){\rm{d}}t} ,x < b, $ |
其中
可见, 当α=1时, 分数次积分即为经典积分.
为了简化结果的表示形式,引入不完全Beta函数的定义[16-18]:
定义3 对于a, b>0且0 < x < 1, 不完全Beta函数Bx(a, b)定义为
$ {B_x}\left( {a,b} \right) = \int_0^x {{t^{a - 1}}{{\left( {1 - t} \right)}^{b - 1}}{\rm{d}}t} . $ |
本文利用Riemann-Liouville分数次积分, 对具有s-凸性的函数, 建立了与Hermite-Hadamard不等式左端相关的不等式.将Hermite-Hadamard积分不等式推广到分数次积分, 文中结果推广了已有文献中的结论, 如不等式(3)~(6) 是本文结果的特殊情况.
1 Hermite-Hadamard型分数次积分不等式的主要结果及证明引理2 令f:[a, b]→R是区间(a, b)上的可微映射, a < b.如果f′∈L[a, b], 则以下关于分数次积分的等式成立:
$ \begin{array}{l} \frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right] + \\ \;\;\;\;\;\;\;\;\;\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right) = \\ \;\;\;\;\;\;\;\;\;\left( {b - a} \right)\left[ {\int_0^{1/2} {{t^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} + } \right.\\ \;\;\;\;\;\;\;\;\;\left. {\int_{1/2}^1 {{{\left( {t - 1} \right)}^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} } \right]. \end{array} $ | (8) |
证明 由分部积分, 有
$ \begin{array}{l} \int_0^{1/2} {{t^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} = \\ {t^\alpha }\frac{{f\left( {ta + \left( {1 - t} \right)b} \right)}}{{a - b}}\left| {_0^{1/2}} \right. - \int_0^{1/2} {\alpha {t^{\alpha - 1}}\frac{{f\left( {ta + \left( {1 - t} \right)b} \right)}}{{a - b}}{\rm{d}}t} = \\ - \frac{1}{{{2^\alpha }\left( {b - a} \right)}}f\left( {\frac{{a + b}}{2}} \right) + \frac{\alpha }{{b - a}}\int_b^{\frac{{a + b}}{2}} {{{\left( {\frac{{x - b}}{{a - b}}} \right)}^{\alpha - 1}}\frac{{f\left( x \right)}}{{a - b}}{\rm{d}}x} = \\ - \frac{1}{{{2^\alpha }\left( {b - a} \right)}}f\left( {\frac{{a + b}}{2}} \right) + {\left( { - 1} \right)^\alpha }\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^{\alpha + 1}}}}J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) \end{array} $ | (9) |
和
$ \begin{array}{l} \int_{1/2}^1 {{{\left( {t - 1} \right)}^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} = \\ {\left( {t - 1} \right)^\alpha }\frac{{f\left( {ta + \left( {1 - t} \right)b} \right)}}{{a - b}}\left| {_{1/2}^1} \right. - \\ \int_{1/2}^1 {\alpha {{\left( {t - 1} \right)}^{\alpha - 1}}\frac{{f\left( {ta + \left( {1 - t} \right)b} \right)}}{{a - b}}{\rm{d}}t} = \\ {\left( { - 1} \right)^\alpha }\frac{1}{{{2^\alpha }\left( {b - a} \right)}}f\left( {\frac{{a + b}}{2}} \right) + \\ \frac{\alpha }{{b - a}}\int_{\frac{{a + b}}{2}}^a {{{\left( {\frac{{x - a}}{{a - b}}} \right)}^{\alpha - 1}}\frac{{f\left( x \right)}}{{a - b}}{\rm{d}}x} = \\ {\left( { - 1} \right)^\alpha }\frac{1}{{{2^\alpha }\left( {b - a} \right)}}f\left( {\frac{{a + b}}{2}} \right) - \frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^{\alpha + 1}}}}J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right), \end{array} $ | (10) |
其中, 用到变量代换x=ta+(1-t)b, t∈[0, 1].
用(b-a)分别乘以式(9) 和(10) 两边, 分别得到
$ \begin{array}{l} \left( {b - a} \right)\int_0^{1/2} {{t^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} = \\ - \frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right) + {\left( { - 1} \right)^\alpha }\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) \end{array} $ | (11) |
和
$ \begin{array}{l} \left( {b - a} \right)\int_{1/2}^1 {{{\left( {t - 1} \right)}^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} = \\ {\left( { - 1} \right)^\alpha }\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right) - \frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right). \end{array} $ | (12) |
由式(11) 和(12),引理2得证.
由引理2, 可以得到关于第2种意义下s-凸函数的分数次积分不等式.
定理6 令f:[a, b]⊂[0, ∞]→R是区间(a, b)上的可微映射, a < b, 且使得f′∈L[a, b].如果对某一个固定的s∈(0, 1], |f′|在区间[a, b]上是第2种意义下s-凸的, 则下面的分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right] + \left[ { - 1 + } \right.} \right.\\ \left. {\left. {{{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \left( {b - a} \right)\left[ {\frac{1}{{{2^{\alpha + s + 1}}\left( {\alpha + s + 1} \right)}} + } \right.\\ \left. {{B_{\frac{1}{2}}}\left( {\alpha + 1,s + 1} \right)} \right]\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (13) |
其中
证明 由引理2以及|f′|是第2种意义下的s-凸函数, 可得
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right] + \left[ { - 1 + } \right.} \right.\\ \left. {\left. {{{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \left( {b - a} \right)\left[ {\int_0^{1/2} {\left| {{t^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} + } \right.\\ \left. {\int_{1/2}^1 {\left| {{{\left( {t - 1} \right)}^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} } \right] \le \\ \left( {b - a} \right)\left[ {\int_0^{1/2} {{t^\alpha }\left[ {{t^s}\left| {f'\left( a \right)} \right| + {{\left( {1 - t} \right)}^s}\left| {f'\left( b \right)} \right|} \right]{\rm{d}}t} + } \right.\\ \left. {\int_{1/2}^1 {{{\left( {1 - t} \right)}^\alpha }\left[ {{t^s}\left| {f'\left( a \right)} \right| + {{\left( {1 - t} \right)}^s}\left| {f'\left( b \right)} \right|} \right]{\rm{d}}t} } \right] = \\ \left( {b - a} \right)\left[ {\frac{1}{{{2^{\alpha + s + 1}}\left( {\alpha + s + 1} \right)}} + {B_{\frac{1}{2}}}\left( {\alpha + 1,s + 1} \right)} \right] \times \\ \left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right), \end{array} $ |
其中用到以下计算结果:
$ \int_0^{1/2} {{t^{\alpha + s}}{\rm{d}}t} = \int_{1/2}^1 {{{\left( {1 - t} \right)}^{\alpha + s}}{\rm{d}}t} = \frac{1}{{{2^{\alpha + s + 1}}\left( {\alpha + s + 1} \right)}} $ |
和
$ \begin{array}{*{20}{c}} {\int_0^{1/2} {{t^\alpha }{{\left( {1 - t} \right)}^s}{\rm{d}}t} = \int_{1/2}^1 {{{\left( {1 - t} \right)}^\alpha }{t^s}{\rm{d}}t} = }\\ {{B_{\frac{1}{2}}}\left( {\alpha + 1,s + 1} \right).} \end{array} $ |
结论得证.
推论1 令f:[a, b]⊂[0, ∞]→R是区间(a, b)上的一个可微映射, a < b, 并且使得f′∈L[a, b].如果|f′|在[a, b]上是凸的, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right] + \left[ { - 1 + } \right.} \right.\\ \left. {\left. {\;\;\;\;\;\;\;\;{{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \;\;\;\;\;\;\;\;\frac{{\left( {b - a} \right)}}{{{2^{\alpha + 1}}\left( {\alpha + 1} \right)}}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (14) |
证明 在式(13) 中, 取s=1, 由于
$ \begin{array}{l} {B_{\frac{1}{2}}}\left( {\alpha + 1,2} \right) = \int_0^{1/2} {{t^\alpha }\left( {1 - t} \right){\rm{d}}t} = \\ \;\;\;\;\;\int_{1/2}^1 {{{\left( {1 - t} \right)}^\alpha }{t^s}{\rm{d}}t} = \frac{1}{{{2^{\alpha + 2}}}}\frac{{\alpha + 3}}{{\left( {\alpha + 1} \right)\left( {\alpha + 2} \right)}}, \end{array} $ |
于是, 结论得证.
注1 在推论1中, 如果令α=1, 则由式(14) 可得到定理1中的不等式(3).
推论2 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果对某一个固定的s∈(0, 1], |f′|在[a, b]上是第2种意义下s-凸的, 则以下不等式成立:
$ \begin{array}{l} \left| {\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \left( {b - a} \right)\left[ {\frac{{{2^{s + 1}} - 1}}{{{2^{s + 1}}\left( {s + 1} \right)\left( {s + 2} \right)}}} \right]\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (15) |
证明 在式(13) 中, 取α=1, 由于
$ \begin{array}{l} {B_{\frac{1}{2}}}\left( {2,s + 1} \right) = \int_0^{1/2} {t{{\left( {1 - t} \right)}^s}{\rm{d}}t} = \\ \;\;\;\;\;\int_{1/2}^1 {\left( {1 - t} \right){t^s}{\rm{d}}t} = \frac{1}{{{2^{s + 2}}}}\frac{{{2^{s + 2}} - s - 3}}{{\left( {s + 1} \right)\left( {s + 2} \right)}}. \end{array} $ |
则结论成立.
注2 在推论2中, 令s=1, 则式(15) 也能得到定理1中的不等式(3).
定理7 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果对某一固定的s∈(0, 1], |f′|p/(p-1)在区间[a, b]上是第2种意义下s-凸的, p>1, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \left[ { - 1 + } \right.\\ \left. {\left. {{{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \frac{{b - a}}{{{2^{\alpha + s + 1}}\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{\alpha p + 1}}} \right)^{\frac{1}{p}}} \times \\ \left[ {{{\left( {{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + \left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}} + } \right.\\ \left. {{{\left( {\left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + {{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}}} \right]. \end{array} $ | (16) |
证明 由引理2以及Hölder不等式, 得到
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \left( {b - a} \right)\left[ {\int_0^{1/2} {\left| {{t^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} + } \right.\\ \left. {\int_{1/2}^1 {\left| {{{\left( {t - 1} \right)}^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} } \right] \le \\ \left( {b - a} \right)\left[ {{{\left( {\int_0^{1/2} {{t^{\alpha p}}{\rm{d}}t} } \right)}^{\frac{1}{p}}}{{\left( {\int_0^{1/2} {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} } \right)}^{\frac{1}{q}}}} \right] + \\ \left( {b - a} \right)\left[ {{{\left( {\int_{1/2}^1 {\left| {{{\left( {t - 1} \right)}^{\alpha p}}} \right|{\rm{d}}t} } \right)}^{\frac{1}{p}}}\left( {\int_{1/2}^1 {\left| {f'\left( {ta + } \right.} \right.} } \right.} \right.\\ \left. {{{\left. {{{\left. {\left. {\left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} \right)}^{\frac{1}{q}}}} \right], \end{array} $ |
其中,
$ \frac{1}{p} + \frac{1}{q} = 1. $ |
因为|f′|q在[a, b]上是第2种意义下s-凸的, 则有
$ \begin{array}{l} \int_0^{1/2} {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} \le \\ \int_0^{1/2} {\left( {{t^s}{{\left| {f'\left( a \right)} \right|}^q} + {{\left( {1 - t} \right)}^s}{{\left| {f'\left( b \right)} \right|}^q}} \right){\rm{d}}t} = \\ \frac{1}{{{2^{s + 1}}\left( {s + 1} \right)}}\left( {{{\left| {f'\left( a \right)} \right|}^q} + \left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( b \right)} \right|}^q}} \right) \end{array} $ |
和
$ \begin{array}{l} \int_{1/2}^1 {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} \le \\ \int_{1/2}^1 {\left( {{t^s}{{\left| {f'\left( a \right)} \right|}^q} + {{\left( {1 - t} \right)}^s}{{\left| {f'\left( b \right)} \right|}^q}} \right){\rm{d}}t} = \\ \frac{1}{{{2^{s + 1}}\left( {s + 1} \right)}}\left( {\left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( a \right)} \right|}^q} + {{\left| {f'\left( b \right)} \right|}^q}} \right). \end{array} $ |
通过计算得到
$ \int_0^{1/2} {{t^{\alpha p}}{\rm{d}}t} = \int_{1/2}^1 {\left| {{{\left( {t - 1} \right)}^{\alpha p}}} \right|{\rm{d}}t} = \frac{1}{{{2^{\alpha p + 1}}\left( {\alpha p + 1} \right)}}. $ |
从而可得
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha + s + 1}}\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{\alpha p + 1}}} \right)^{\frac{1}{p}}} \times \\ \left[ {{{\left( {{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + \left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}} + } \right.\\ \left. {{{\left( {\left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + {{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}}} \right], \end{array} $ |
定理7得证.
推论3 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果|f′|p/(p-1)在区间[a, b]上是凸的, p>1, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \left[ { - 1 + } \right.\\ \left. {\left. {{{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha + 3}}}}{\left( {\frac{4}{{\alpha p + 1}}} \right)^{\frac{1}{p}}}\left[ {\left( {{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + } \right.} \right.\\ {\left. {3{{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)^{\left( {p - 1} \right)/p}} + \\ \left. {{{\left( {3{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + {{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}}} \right]. \end{array} $ | (17) |
证明 在式(16) 中, 取s=1, 即可得到式(7).
注3 在推论3中, 如果令α=1, 则由式(17) 可得到定理2中的不等式(4).
推论4 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)中是一个可微映射, a < b, 并且使得f′∈L[a, b].如果对某一个固定的s∈(0, 1], |f′|p/(p-1)在区间[a, b]上是第2种意义下s-凸的, p>1, 则以下不等式成立:
$ \begin{array}{l} \left| {\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x - f\left( {\frac{{a + b}}{2}} \right)} } \right| \le \\ \frac{{b - a}}{{{2^{s + 2}}\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{p + 1}}} \right)^{\frac{1}{p}}} \times \\ \left[ {{{\left( {{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + \left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}} + } \right.\\ \left. {{{\left( {\left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + {{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}}} \right]. \end{array} $ | (18) |
证明 在式(16) 中, 取α=1, 即可得到式(18).
注4 在推论4中, 如果令s=1, 则由式(18) 也可得到定理2中的不等式(4).
定理8 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果对某一固定的s∈(0, 1], |f′|p/(p-1)在区间[a, b]上是第2种意义下s-凸的, p>1, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \left[ { - 1 + } \right.\\ \left. {\left. {{{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^\alpha }\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{\alpha p + 1}}} \right)^{\frac{1}{p}}}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (19) |
证明 令a1=|f′(a)|p/(p-1), b1=(2s+1-1)|f′(b)|p/(p-1), a2=(2s+1-1)|f′(a)|p/(p-1), b2=|f′(b)|p/(p-1),这里对p>1, 有0 < (p-1)/p < 1.因为对于0 < r < 1, a1, a2, …, an≥0和b1, b2, …, bn≥0, 有
$ \sum\limits_{i = 1}^n {{{\left( {{a_i} + {b_i}} \right)}^r}} \le \sum\limits_{i = 1}^n {a_i^r} + \sum\limits_{i = 1}^n {b_i^r} . $ |
由定理7, 可得
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha + s + 1}}\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{\alpha p + 1}}} \right)^{\frac{1}{p}}} \times \\ \left[ {{{\left( {{{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + \left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}} + } \right.\\ \left. {{{\left( {\left( {{2^{s + 1}} - 1} \right){{\left| {f'\left( a \right)} \right|}^{p/\left( {p - 1} \right)}} + {{\left| {f'\left( b \right)} \right|}^{p/\left( {p - 1} \right)}}} \right)}^{\left( {p - 1} \right)/p}}} \right] \le \\ \frac{{b - a}}{{{2^{\alpha + s + 1}}\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{\alpha p + 1}}} \right)^{\frac{1}{p}}} \times \\ \left[ {1 + {{\left( {{2^{s + 1}} - 1} \right)}^{\left( {p - 1} \right)/p}}} \right]\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right) \le \\ \frac{{b - a}}{{{2^\alpha }\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{\alpha p + 1}}} \right)^{\frac{1}{p}}}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right), \end{array} $ |
定理8得证.
推论5 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果|f′|p/(p-1)在区间[a, b]上是凸的, p>1, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha + 1}}}}{\left( {\frac{4}{{\alpha p + 1}}} \right)^{\frac{1}{p}}}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (20) |
证明 在式(19) 中, 取s=1, 即可得到式(20).
注5 在推论5中, 取α=1, 则由式(20) 可得到定理3中的不等式(5).
推论6 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果对某一个固定的s∈(0, 1], |f′|p/(p-1)在区间[a, b]上是第2种意义下s-凸的, p>1, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{1}{{b + a}}\int_a^b {f\left( x \right){\rm{d}}x} - f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{2\left( {s + 1} \right)}}{\left( {\frac{{{2^s}\left( {s + 1} \right)}}{{p + 1}}} \right)^{\frac{1}{p}}}\left( {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right). \end{array} $ | (21) |
证明 在式(19) 中取α=1, 即可得到式(21).
注6 在推论6中, 如果令s=1, 则由式(21) 也可得到定理3中的不等式(5).
定理9 令f:[a, b]⊂[0, ∞]→R, 在区间(a, b)上是一个可微映射, a < b, 并且使得f′∈L[a, b].如果对某一固定的s∈(0, 1], |f′|q在区间[a, b]上是第2种意义下s-凹的, p, q>1, 则以下分数次积分不等式成立:
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha p + 1}}\left( {\alpha p + 1} \right)}}{2^{\frac{{s - 1}}{q}}}\left[ {\left| {f'\left( {\frac{{a + 3b}}{4}} \right)} \right| + \left| {f'\left( {\frac{{3a + b}}{4}} \right)} \right|} \right], \end{array} $ | (22) |
其中,
证明 由引理2以及Hölder不等式, 可得
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \left( {b - a} \right)\left[ {\int_0^{1/2} {\left| {{t^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t + } } \right.\\ \left. {\int_{1/2}^1 {\left| {{{\left( {t - 1} \right)}^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} } \right] \le \\ \left( {b - a} \right)\left[ {{{\left( {\int_0^{1/2} {{t^{\alpha p}}{\rm{d}}t} } \right)}^{\frac{1}{p}}}{{\left( {\int_0^{1/2} {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} } \right)}^{\frac{1}{q}}}} \right] + \\ \left( {b - a} \right)\left[ {{{\left( {\int_0^{1/2} {\left| {{{\left( {t - 1} \right)}^{\alpha p}}} \right|{\rm{d}}t} } \right)}^{\frac{1}{p}}} \times } \right.\\ \left. {{{\left( {\int_{1/2}^1 {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} } \right)}^{\frac{1}{q}}}} \right]. \end{array} $ |
因为|f′|q在区间[a, b]上是第2种意义下s-凹的, 利用不等式(7), 可得
$ \int_0^{1/2} {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} \le {2^{s - 1}}{\left| {f'\left( {\frac{{a + 3b}}{4}} \right)} \right|^q}, $ |
$ \int_{1/2}^1 {{{\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|}^q}{\rm{d}}t} \le {2^{s - 1}}{\left| {f'\left( {\frac{{3a + b}}{4}} \right)} \right|^q}. $ |
通过计算, 可得
$ \int_0^{1/2} {{t^{\alpha p}}{\rm{d}}t} = \int_{1/2}^1 {\left| {{{\left( {t - 1} \right)}^{\alpha p}}} \right|{\rm{d}}t} = \frac{1}{{{2^{\alpha p + 1}}\left( {\alpha p + 1} \right)}}. $ |
由上述不等式, 有
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha p + 1}}\left( {\alpha p + 1} \right)}}{2^{\frac{{s - 1}}{q}}}\left[ {\left| {f'\left( {\frac{{a + 3b}}{4}} \right)} \right| + \left| {f'\left( {\frac{{3a + b}}{4}} \right)} \right|} \right]. \end{array} $ |
推论7 在定理9的条件下, 如果|f′|是一个线性映射, 则
$ \begin{array}{l} \left| {\frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {{{\left( { - 1} \right)}^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) - J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right)} \right]} \right. + \\ \left. {\left[ { - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^\alpha }}}f\left( {\frac{{a + b}}{2}} \right)} \right| \le \\ \frac{{b - a}}{{{2^{\alpha p + 1}}\left( {\alpha p + 1} \right)}}{2^{\frac{{s - 1}}{q}}}\left| {f'\left( {a + b} \right)} \right|. \end{array} $ | (23) |
证明 根据定理9中的式(22), 由于|f′|是一个线性映射, 立即可得式(23)[13].
注7 在推论7中, 取s=1, α=1, 由于p>1, 则由式(23) 可得到定理4中的式(6).
2 应用举例文献[14]给出一个s凸函数的例子:令s∈(0, 1), a1, b1, c1∈R,函数f:[0, ∞]→R定义为:
$ f\left( t \right) = \left\{ \begin{array}{l} {a_1},\;\;t = 0,\\ {b_1}{t^s} + {c_1},\;\;\;\;t > 0. \end{array} \right. $ |
如果b1≥0, 且0≤c1≤a1,则f∈Ks2.因此当取a1=c1=0,b1=1时,对于f:[0, 1]→[0, 1](其中f(t)=ts),有f∈Ks2.
注8 若在本文结论中取[a, b]=[0, 1],即a=0, b=1, f(x)=xλ-1(2>λ>1, x∈[0, 1]),结合不完全Beta函数定义可得:
$ \begin{array}{l} \frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}{\left( { - 1} \right)^\alpha }J_{\frac{{a + b}}{2} - }^\alpha f\left( b \right) = {\left( { - 1} \right)^\alpha }\alpha \int_1^{\frac{1}{2}} {{{\left( {t - 1} \right)}^{\alpha - 1}}{t^{\lambda - 1}}{\rm{d}}t} = \\ \;\;\;\;\;\alpha \int_0^{\frac{1}{2}} {{x^{\alpha - 1}}{{\left( {1 - x} \right)}^{\lambda - 1}}{\rm{d}}x} = \alpha {B_{\frac{1}{2}}}\left( {\alpha ,\lambda } \right), \end{array} $ |
其中用到换元1-t=x,并且
$ \frac{{\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}J_{\frac{{a + b}}{2} + }^\alpha f\left( a \right) = {\left( { - 1} \right)^{\alpha - 1}}\alpha \int_{\frac{1}{2}}^0 {{t^{\alpha + \lambda - 2}}{\rm{d}}t} = \frac{{{{\left( { - 1} \right)}^\alpha }\alpha }}{{\alpha + \lambda - 1}}{\left( {\frac{1}{2}} \right)^{\alpha + \lambda - 1}}. $ |
因此,有以下命题:
命题1 令2>λ>1, 由注8以及定理6可得不等式:
$ \begin{array}{l} \left| {\alpha {B_{\frac{1}{2}}}\left( {\alpha ,\lambda } \right) + \left[ {\frac{{{{\left( { - 1} \right)}^\alpha }\alpha }}{{\alpha + \lambda - 1}} - 1 + {{\left( { - 1} \right)}^\alpha }} \right]\frac{1}{{{2^{\alpha + \lambda - 1}}}}} \right| \le \\ \left[ {\frac{1}{{{2^{\alpha + s - 1}}\left( {\alpha + s - 1} \right)}} + {B_{\frac{1}{2}}}\left( {\alpha + 1,s + 1} \right)} \right]\left( {\lambda - 1} \right). \end{array} $ |
注9 按照命题1的方法,由文中其他结论可得到类似的不等式.
[1] | SET E, ÖZDEMIR M E, DRAGOMIR S S. On the Hermite-Hadamard inequality and other integral inequalities involving two functions[J]. J Inequal Appl, 2010:Article ID 148102. |
[2] | LATIF M A. Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications[J]. Arab J Math Sci, 2015, 21(1): 84–97. |
[3] | ALOMARI M W, DARUS M, KIRMACI U S. Some inequalities of Hermite-Hadamard type for s-convex functions[J]. Acta Mathematica Scientia, 2011, 31(4): 1643–1652. DOI:10.1016/S0252-9602(11)60350-0 |
[4] | BAKULA M K, ÖZDEMIR M E, PEARIC' J. Hadamard-type inequalities for m-convex and (α, m)-convex functions[J]. J Inequal Pure and Appl Math, 2007, 9(4): Article 96. |
[5] | LATIF M A, SHOAIB M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions[J]. Journal of the Egyptian Mathematical Society, 2015, 23: 236–241. DOI:10.1016/j.joems.2014.06.006 |
[6] | ÖZDEMIR M E, AVCI M, KAVURMACI H. Hermite-Hadamardtype inequalities via (α, m)-convexity[J]. Comput Math Appl, 2011, 61: 2614–2620. DOI:10.1016/j.camwa.2011.02.053 |
[7] | ÖZDEMIR M E, YILDIZ Ç, AKDEMIR A O, et al. On some inequalities for s-convex functions and applications[J]. Journal of Inequalities and Applications, 2013, 2013: 333. DOI:10.1186/1029-242X-2013-333 |
[8] | SARIKAYA M Z, SET E, YALDIZ H, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities[J]. Math Comput Model, 2013, 57: 2403–2407. DOI:10.1016/j.mcm.2011.12.048 |
[9] | SET E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals[J]. Comput Math Appl, 2012, 63: 1147–1154. DOI:10.1016/j.camwa.2011.12.023 |
[10] | WANG J R, ZHU C C, ZHOU Y. New generalized Hermite-Hadamard type inequalities and applications to special means[J]. Journal of Inequalities and Applications, 2013, 2013: 325. DOI:10.1186/1029-242X-2013-325 |
[11] | ÖZDEMIR M E, DRAGOMIR S S, YILDIZ Ç. The Hadamard inequalities for convex function via fractional integrals[J]. Acta Mathematica Scientia, 2013, 33(5): 1293–1299. DOI:10.1016/S0252-9602(13)60081-8 |
[12] | KIRMACI U S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J]. Appl Math Comput, 2004, 147: 137–146. |
[13] | KIRMACI U S, ÖZDEMIR M E. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J]. Appl Math Comput, 2004, 153: 361–368. |
[14] | HUDZIK H, MALIGRANDA L. Some remarks on s-convex functions[J]. Aequationes Math, 1994, 48: 100–111. DOI:10.1007/BF01837981 |
[15] | DRAGOMIR S, FITZPATRICK S. The Hadamard's inequality for s-convex functions in the second sense[J]. Demonstratio Math, 1998, 31(3): 633–642. |
[16] | GRADSHTEYN I S, RYZHIK I M. Tables of Integrals, Series, and Products[M]. San Diego: Academic Press, 2000. |
[17] | ÖZÇAG E, E GE, GÜRÇAY H. An extension of the incomplete beta function for negative integers[J]. J Math Anal Appl, 2008, 338: 984–992. DOI:10.1016/j.jmaa.2007.05.075 |
[18] | ÖZÇAG E, EGE, GÜRÇAY H, et al. On partial derivatives of the incomplete beta function[J]. Applied Mathematics Letters, 2008, 21: 675–681. DOI:10.1016/j.aml.2007.07.020 |