2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
3. School of Electronic and Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China
2. 郑州大学 数学与统计学院, 河南 郑州 450001;
3. 南阳理工学院 电子与电气工程学院, 河南 南阳 473004
Markoff-Hurwitz-type equations are the following type of the Diophantine equation:
$ x_1^2 + x_2^2 + \cdots + x_n^2 = c{x_1}{x_2} \cdots {x_n}, $ |
where n, c are positive integers and n≥3. This type of equations were firstly studied by MARKOFF[1] for the case n=3, c=3 because of its relation to Diophantine approximation. More generally, these equations were studied by HURWITZ [2].
CARLITZ[3] investigated the Markoff-Hurwitz-type equations over finite fields. Let Nq denote the finite of q elements and
$ {a_1}x_1^2 + {a_2}x_2^2 + \cdots + {a_n}x_n^2 = c{x_1}{x_2} \cdots {x_n}, $ |
where a1, a2, …, an, c∈
Recently, BAOULINA[5-7] studied the generalized Markoff-Hurwitz-type equation:
$ {a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}} = c{x_1}{x_2} \cdots {x_n}, $ |
where ai, c∈
$ {\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)^k} = cx_1^{{k_1}}x_2^{{k_2}} \cdots x_n^{{k_n}}, $ | (1) |
where n≥2, mi, ki, k are positive integers, ai, c∈
$ x_1^{{m_1}} + x_2^{{m_2}} + \cdots + x_n^{{m_n}} = c{x_1}{x_2} \cdots {x_t} $ |
under some certain restrictions, where mj|(q-1), n≥2, c∈
In this paper, we consider the rational points of the further generalized Markoff-Hurwitz-type equations of the form
$ {\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)^k} = cx_1^{{k_1}}x_2^{{k_2}} \cdots x_t^{{k_t}} $ | (2) |
over the finite field
Let f(x1, x2, …, xn) and g(x1, x2, …, xn) be polynomials with coefficients in
Theorem 1 With the notation as above, if
$ {N_q} = {q^{t - 1}} + {\left( { - 1} \right)^{n - 1}}{\left( {q - 1} \right)^{t - n}}. $ |
Clearly, Nq is independent of the coefficients ai, c and the exponents kn+1, …, kt. Letting t=n, then theorem 1 reduces to the theorem of PAN et al[8]. Theorem 1 also generalizes the main results of [10] in some other cases.
This paper is organized as follows. In section 1, we recall some useful known lemmas. In section 2, we make use of the results presented in section 1 to show theorem 1. Some interesting applications of theorem 1 will be provided as corollaries at the end.
1 Preliminary lemmasIn this section, we present some useful lemmas which are needed in section 2. Let m be a positive integer and h(x1, x2, …, xr) be a polynomial with integer coefficients. We use N[h≡0(mod m)] to denote the number of the solutions of the congruence h(x1, x2, …, xr)≡(mod m). We first recall two well known results in the elementary number theory.
Lemma 1[13] Let a, b be positive integers. Then
$ \gcd \left( {a,b} \right){\rm{lcm}}\left[ {a,b} \right] = ab. $ |
Lemma 2[13] Let a1, a2, …, ar, m, b be positive integers. Then the necessary and sufficient condition for the congruence a1x1+a2x2+…+arxr≡b(mod m) to have a solution is that d=gcd(a1, a2, …, ar, m)|b. If this condition is satisfied, then the number of incongruent (mod m) solutions is mr-1d. Furthermore, we have
$ N\left[ {\sum\limits_{i = 1}^r {{a_i}{x_i}} \equiv b\left( {\bmod m} \right)} \right] = N\left[ {d\sum\limits_{i = 1}^r {{x_i} \equiv b\left( {\bmod m} \right)} } \right]. $ |
Lemma 3 Let t1, t2, …, tr be positive integers and d=gcd(t1, t2, …, tr, q-1). Then for any elements a, α∈
$ \begin{gathered} {N_q}\left[ {ax_1^{{t_1}}x_2^{{t_2}} \cdots x_r^{{t_r}} = \alpha } \right] = {N_q}\left[ {a{{\left( {{x_1}{x_2} \cdots {x_r}} \right)}^d} = \alpha } \right] = \hfill \\ \left\{ \begin{gathered} d{\left( {q - 1} \right)^{r - 1}},\;\;{\text{if}}\;{a^{ - 1}}\alpha \;{\text{is}}\;{\text{a}}\;d - {\text{th}}\;{\text{power}}\;{\text{in}}\;\mathbb{F}_q^ * , \hfill \\ 0,\;\;{\text{otherwise}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $ |
Proof Using the fact that
$ \begin{array}{l} {N_q}\left[ {ax_1^{{t_1}} \cdots x_r^{{t_r}} = \alpha } \right] = \\ \sum\limits_{1 \le {e_1}, \cdots ,{e_r} \le q - 1} {{N_q}\left[ {{\xi ^{{e_1}{t_1}}} \cdots {\xi ^{{e_r}{t_r}}} = {\xi ^m}} \right]} = \\ \sum\limits_{1 \le {e_1}, \cdots ,{e_r} \le q - 1} {{N_q}\left[ {{e_1}{t_1} + \cdots + {e_r}{t_r} = m\left( {\bmod q - 1} \right)} \right]} = \\ \sum\limits_{1 \le {e_1}, \cdots ,{e_r} \le q - 1} {{N_q}\left[ {\left( {{e_1} + \cdots + {e_r}} \right)d = m\left( {\bmod q - 1} \right)} \right]} = \\ \sum\limits_{1 \le {e_1}, \cdots ,{e_r} \le q - 1} {{N_q}\left[ {{{\left( {{\xi ^{{e_1}}} \cdots {\xi ^{{e_r}}}} \right)}^d} = {\xi ^m}} \right]} = \\ {N_q}\left[ {a{{\left( {{x_1}{x_2} \cdots {x_r}} \right)}^d} = \alpha } \right]. \end{array} $ |
Since lemma 2 tells us that
$ \begin{array}{l} \sum\limits_{1 \le {e_1}, \cdots ,{e_r} \le q - 1} {{N_q}\left[ {{e_1}{t_1} + \cdots + {e_r}{t_r} = m\left( {\bmod q - 1} \right)} \right]} = \\ \;\;\;\;\;\;\left\{ \begin{array}{l} d{\left( {q - 1} \right)^{r - 1}},\;\;{\rm{if}}\;d\left| m \right.,\\ 0,\;\;{\rm{otherwise}}. \end{array} \right. \end{array} $ |
Then the desired result follows immediately. This ends the proof of lemma 2.
Lemma 4[14] Let n be a positive integer and 1≤j≤n. Assume that
$ \begin{array}{l} {N_q}\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}} = 0} \right) = \\ \;\;\;\;\;\;\;\;{N_q}\left( {{a_1}x_1^{{d_1}} + {a_2}x_2^{{d_2}} + \cdots + {a_n}x_n^{{d_n}} = 0} \right) = {q^{n - 1}}. \end{array} $ |
The following result comes from PAN et al [8].
Lemma 5[8] In the equation (2), if t=n and
$ \begin{array}{l} {N_q}\left[ {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}} = cx_1^{{k_1}}x_2^{{k_2}} \cdots x_n^{{k_n}}} \right] = \\ \;\;\;\;\;\;\;\;\;\;\;{q^{n - 1}} + {\left( { - 1} \right)^{n - 1}}. \end{array} $ |
Lemma 6[10, 15] The number of elements of d-th power in
In this section, we give the proof of theorem 1.
Proof Firstly, we claim that the condition of lemma 5 is equivalent to the conditions of theorem 1. That is, the condition
$ \gcd \left( {\sum\limits_{i = 1}^n {\frac{{{k_i}{m_1} \cdots {m_n}}}{{{m_i}}}} - k{m_1} \cdots {m_n},q - 1} \right) = 1 $ |
is equivalent to the following two conditions:
$ \gcd \left( {\sum\limits_{i = 1}^n {\frac{{{k_i}M}}{{{m_i}}}} - kM,q - 1} \right) = 1\;{\rm{and}}\;{d_1},{d_2}, \cdots ,{d_n} $ |
are pairwise coprime. Since
$ \sum\limits_{i = 1}^n {\frac{{{k_i}{m_1} \cdots {m_n}}}{{{m_i}}}} - k{m_1} \cdots {m_n} = \frac{{{m_1} \cdots {m_n}}}{M}\left( {\sum\limits_{i = 1}^n {\frac{{{k_i}M}}{{{m_i}}}} - kM} \right), $ |
thus we can deduce that the condition
$ \gcd \left( {\sum\limits_{i = 1}^n {\frac{{{k_i}{m_1} \cdots {m_n}}}{{{m_i}}}} - k{m_1} \cdots {m_n},q - 1} \right) = 1 $ |
is equivalent to
In the following, we use Nq (resp. Ñq) to denote the number of the solutions of the equations (a1x1m1+a2x2m2+…+anxnmn)k=cx1k1x2k2…xtkt with xkn+1n+1…xtkt=0 (resp. xkn+1n+1…xtkt≠0). Clearly, one has
$ {N_q} = {{\bar N}_q} + {{\tilde N}_q}. $ | (3) |
Then, we can solve the problem in two cases. One is xkn+1n+1…xtkt=0 and the other one is xkn+1n+1…xtkt≠0.
Case ⅰ Clearly, xkn+1n+1…xtkt=0 is reduced to say that xn+1…xt=0. Then, we have
$ \begin{array}{l} {N_q}\left[ {{x_{n + 1}} \cdots {x_t} = 0} \right] = \sum\limits_{j = 1}^{t - n} {\left( {\begin{array}{*{20}{c}} {t - n}\\ j \end{array}} \right){{\left( {q - 1} \right)}^{t - n - j}}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{q^{t - n}} - {\left( {q - 1} \right)^{t - n}}. \end{array} $ | (4) |
Using the assumption d1, d2, …, dn are pairwise coprime, it follows from (4) and lemma 4 that
$ \begin{array}{l} {{\bar N}_q} = \left( {{q^{t - n}} - {{\left( {q - 1} \right)}^{t - n}}} \right) \times \\ \;\;\;\;\;\;\;\;{N_q}\left[ {{{\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)}^k} = 0} \right] = \\ \;\;\;\;\;\;\;\;\left( {{q^{t - n}} - {{\left( {q - 1} \right)}^{t - n}}} \right) \times \\ \;\;\;\;\;\;\;\;{N_q}\left[ {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}} = 0} \right] = \\ \;\;\;\;\;\;\;\;{q^{n - 1}}\left( {{q^{t - n}} - {{\left( {q - 1} \right)}^{t - n}}} \right) = \\ \;\;\;\;\;\;\;\;{q^{t - 1}} - {q^{n - 1}}{\left( {q - 1} \right)^{t - n}}. \end{array} $ | (5) |
Case ⅱ If xkn+1n+1…xtkt≠0, we can let f=cxkn+1n+1…xtkt and d=gcd(kn+1, …, kt, q-1).
Define S:={a∈
$ \begin{array}{l} {{\tilde N}_q} = {N_q}\left[ {{{\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)}^k} = fx_1^{{k_1}}x_2^{{k_2}} \cdots x_n^{{k_n}}} \right] = \\ \;\;\;\;\;\;\;\;\;d{\left( {q - 1} \right)^{t - n - 1}} \times \\ \;\;\;\;\;\;\;\;\;\sum\limits_{a \in S} {{N_q}\left[ {{{\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)}^k} = } \right.} \\ \;\;\;\;\;\;\;\;\;\left. {ax_1^{{k_1}}x_2^{{k_2}} \cdots x_n^{{k_n}}} \right]. \end{array} $ | (6) |
Noting that
$ \begin{array}{l} {N_q}\left[ {{{\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)}^k} = } \right.\\ \;\;\;\;\;\;\;\left. {ax_1^{{k_1}}x_2^{{k_2}} \cdots x_n^{{k_n}}} \right] = {q^{n - 1}} + {\left( { - 1} \right)^{n - 1}}. \end{array} $ |
Then, it follows from lemma 6 that
$ \begin{array}{l} \sum\limits_{a \in S} {{N_q}\left[ {{{\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)}^k} = } \right.} \\ \;\;\;\;\;\;\;\left. {cx_1^{{k_1}}x_2^{{k_2}} \cdots x_n^{{k_n}}} \right] = \frac{{q - 1}}{d}\left( {{q^{n - 1}} + {{\left( { - 1} \right)}^{n - 1}}} \right). \end{array} $ | (7) |
Using (6) and (7), one can derive that
$ {{\tilde N}_q} = {\left( {q - 1} \right)^{t - n}}\left( {{q^{n - 1}} + {{\left( { - 1} \right)}^{n - 1}}} \right). $ | (8) |
The desired result can follow immediately from (3), (5) and (8). This ends the proof of theorem 1.
In concluding this section, we present some trivial corollaries.
Corollary 1 For the further generalized Markoff-Hurwitz-type equations of the form
$ {\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)^k} = c{x_1}{x_2} \cdots {x_t} $ |
over the finite field
$ {N_q} = {q^{t - 1}} + {\left( { - 1} \right)^{n - 1}}{\left( {q - 1} \right)^{t - n}}. $ |
Corollary 2 For the further generalized Markoff-Hurwitz-type equations of the form
$ {{\left( {{a}_{1}}{{x}_{1}}^{{{m}_{1}}}+{{a}_{2}}{{x}_{2}}^{{{m}_{2}}}+\cdots +{{a}_{n}}{{x}_{n}}^{{{m}_{n}}} \right)}^{k}}=c{{x}_{1}}^{{{m}_{1}}}{{x}_{2}}^{{{m}_{2}}}\cdots {{x}_{t}}^{{{m}_{t}}} $ |
over the finite field
$ {N_q} = {q^{t - 1}} + {\left( { - 1} \right)^{n - 1}}{\left( {q - 1} \right)^{t - n}}. $ |
Corollary 3 For the further generalized Markoff-Hurwitz-type equations of the form
$ {\left( {{a_1}x_1^{{m_1}} + {a_2}x_2^{{m_2}} + \cdots + {a_n}x_n^{{m_n}}} \right)^k} = c{x_1}{x_2} \cdots {x_t} $ |
over the finite field
$ {N_q} = {q^{t - 1}} + {\left( { - 1} \right)^{n - 1}}{\left( {q - 1} \right)^{t - n}}. $ |
Clearly, corollaries 1~3 are some special cases of theorem 1. For example, consider the further generalized Markoff-Hurwitz-type equation over
$ {\mathbb{F}_{13}}:\left( {{a_1}x_1^5 + {a_2}x_2^3 + {a_3}x_3^8} \right) = bx_1^7x_2^7x_3^7x_4^{10}x_5^5x_6^4, $ | (8) |
where a1, a2, a3, b∈
[1] | MARKOFF A A. Sur les formes quadratiques binaires indéfinies[J]. Mathematische Annalen, 1880, 17(3): 379–399. DOI:10.1007/BF01446234 |
[2] | HURWITZ A. Über eine aufgabe der unbestimmten analysis[J]. Archiv der Mathematik und Physik, 1907(3): 185–196. |
[3] | CARLITZ L. Certain special equations in a finite field[J]. Monatshefte Für Mathematik, 1954, 58(1): 5–12. DOI:10.1007/BF01478558 |
[4] | CARLITZ L. The number of solutions of some equations in a finite field[J]. Portugaliae Mathematica, 1954, 13(1): 25–31. |
[5] | BAOULINA I. On the number of solutions of the equation a1x1m1+a2x2m2+…+anxnmn=bx1x2…xn in a finite field[J]. Acta Applicandae Mathematicae, 2005, 89(1): 35–39. |
[6] | BAOULINA I. Generalizations of the Markoff-Hurwitz equations over finite fields[J]. Journal of Number Theory, 2006, 118(1): 31–52. DOI:10.1016/j.jnt.2005.08.009 |
[7] | BAOULINA I. On the equation (x1m1+x2m2+…+xnmn)k=ax1x2…xn over a finite field[J]. Finite Fields and Their Applications, 2007, 13(4): 887–895. DOI:10.1016/j.ffa.2006.09.011 |
[8] | PAN X L, ZHAO X R, CAO W. A problem of Carlitz and its generalizations[J]. Archiv der Mathematik, 2014, 102(4): 337–343. DOI:10.1007/s00013-014-0635-3 |
[9] | CAO W. On generalized Markoff-Hurwitz-type equations over finite fields[J]. Acta Applicandae Mathematicae, 2010, 112(3): 275–281. DOI:10.1007/s10440-010-9568-4 |
[10] | SONG J, CHEN F Y. The number of some equations over finite fields[J]. Journal of University of Chinese Academy of Sciences, 2015, 32(5): 582–587. |
[11] | CAO W, SUN Q. On a class of equations with special degrees over finite fields[J]. Acta Arithmetica, 2007, 130(2): 195–202. DOI:10.4064/aa130-2-8 |
[12] | ZHAO Z J, CAO X W. On the number of solutions of certain equations over finite fields[J]. Journal of Mathematical Research and Exposition, 2010, 30(6): 957–966. |
[13] | KENG H L. Introduction to Number Theory[M]. Heidelberg: Springer-Verlag, 1982. |
[14] | BAOULINA I. Solutions of equations over finite fields:Enumeration via bijections[J]. Journal of Algebra and Its Applications, 2016, 15(7): 1650136. DOI:10.1142/S021949881650136X |
[15] | LIDL R, NIEDERREITER H. Finite Fields-Encyclopedia of Mathematics and Its Applications[M]. 2nd ed. Cambridge: Cambridge University Press, 1997. |