关于Lipschitz拟伪压缩映像族的强收敛定理
高兴慧, 杨春萍
延安大学 数学与计算机科学学院, 陕西 延安 716000

作者简介:高兴慧(1975-),女,副教授,硕士,主要从事非线性泛函分析研究,E-mail:yadxgaoxinghui@163.com.

摘要

在Hilbert空间中设计出2种新的关于Lipschitz拟伪压缩映像族和严格拟伪压缩映像族的收缩投影算法,并利用所提出的算法证明了Lipschitz拟伪压缩映像族和严格拟伪压缩映像族的公共不动点的强收敛定理,所得结果改进和推广了已有文献的相关结果.

关键词: 收缩投影算法; Lipschitz拟伪压缩映像族; 公共不动点
中图分类号:O177.91 文献标志码:A 文章编号:1008-9497(2016)01-071-04
Strong convergence theorems for a family of Lipschitz quasi-pseudo-contractions
GAO Xinghui, YANG Chunping
College of Mathematics and Computer Science, Yanan University, Yanan 716000, Shaanxi Province, China
Abstract

The purpose is to study the shrinking projection methods for a family of Lipschitz quasi-pseudo-contractions and a family of strict quasi-pseudo-contractions. Then, we proved two strong convergence theorems for their common fixed points by using the proposed projection algorithms in the framework of Hilbert spaces. The results presented in this paper improve and extend the corresponding ones announced by many others.

Keyword: shrinking projection method; a family of Lipschitz quasi-pseudo-contraction; common fixed points

The authors have declared that no competing interests exist.

参考文献
[1] ZHOU H Y. Strong convergence theorems for a family of Lipschitz quasi-pseudo-contractions in Hilbert spaces[J]. Nonlinear Anal, 2009, 71: 120-125. [本文引用:1]
[2] ZHOU H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces[J]. J Math Anal Appl, 2008, 343: 546-556. [本文引用:1]
[3] AOYAMA K, KOHSAKA F, TAKAHASHI W. Shrinking projection methods for firmly nonexpansive mappings[J]. Nonlinear Anal, 2009, 71: 1626-1632. [本文引用:1]
[4] MARINO G, XU H K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces[J]. J Math Anal Appl, 2007, 329: 336-346. [本文引用:1]
[5] KIM T H, XU H K. Strong convergence of modified Mann iterations[J]. Nonlinear Anal, 2005, 61: 51-60. [本文引用:1]
[6] ZHOU H Y. Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces[J]. Nonlinear Anal, 2008, 69: 456-462. [本文引用:1]
[7] 王元恒, 石惠敏. 2个有限族广义依中心意义的渐近非扩张非自映像公共不动点定理[J]. 浙江大学学报: 理学版, 2014, 41(3): 282-287.
WANG Yuanheng, SHI Huimin. Common fixed point theorems for two finite families of generalized asymptotically nonexpansive nonself-maps with the intermediate sense[J]. Journal of Zhejiang University: Science Edition, 2014, 41(3): 282-287. [本文引用:1]
[8] 高兴慧, 马乐荣. Lipschitz拟伪压缩映像族的收缩投影算法[J]. 数学的实践与认识, 2014, 44(20): 254-257.
GAO Xinghui, MA Lerong. Shrinking projection methods for Lipschitz quasi-pseudo-contractions[J]. Mathematics in Practice and Theory, 2014, 44(20): 254-257. [本文引用:1]
[9] ZHOU H Y, GAO X H. Iterative approximation of common fixed points for two quasi-φ-nonexpansive
mappings in Banach spaces[J]. Math Commun, 2012, 17: 49-62. [本文引用:1]
[10] GAO X H, ZHOU H Y. Strong convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces[J]. Acta Mathematics Applicatae Sinica: English Series, 2012, 28(2): 337-350. [本文引用:1]
[11] 高兴慧, 周海云, 高改良. 平衡问题和不动点问题的公共元的混杂算法[J]. 数学物理学报: A辑, 2011, 31(3): 720-728.
GAO Xinghui, ZHOU Haiyun, GAO Gailiang. Hybrid algorithms of common elements for equilibrium problems and fixed point problems[J]. Acta Mathematics Scientia: Ser A, 2011, 31(3): 720-728. [本文引用:1]
[12] GAO X H, ZHOU H Y. Shrinking projection methods for a family of quasi-φ-strict asymptotically pseudo-contractions in Banach space[J]. Journal of Mathematical Research and Exposition, 2011, 31(5): 905-914. [本文引用:1]