Please wait a minute...
浙江大学学报(理学版)  2024, Vol. 51 Issue (1): 41-54    DOI: 10.3785/j.issn.1008-9497.2024.01.006
数学与计算机科学     
面向社会关系网络的数字金融欺诈检测研究进展
刘华玲(),许珺怡,曹世杰,刘雅欣,乔梁
上海对外经贸大学 统计与信息学院,上海 201620
Research progress of digital financial fraud detection oriented to social relations network
Hualing LIU(),Junyi XU,Shijie CAO,Yaxin LIU,Liang QIAO
School of Statistics and Information,Shanghai University of International Business and Economics,Shanghai 201620,China
 全文: PDF(1077 KB)   HTML( 1 )
摘要:

在金融科技兴起的新时代,数字技术是金融业未来发展的核心驱动力,基于数字技术的欺诈检测成为新的研究热点。金融欺诈检测技术研究由传统的提升专家经验、优化机器学习模型转向探索面向社会关系网络的图机器学习方法。聚焦社会关系网络,基于网络分析的发展历程,从检测异常个人、可疑团伙和不良中介3类主体的视角,对金融欺诈检测的核心工作、典型应用进行了综述;归纳分析了面向社会关系网络不同类别的数字金融欺诈检测技术;并给出了面向社会关系网络的数字金融欺诈检测研究的发展趋势和方向。

关键词: 大数据人工智能社会关系网络欺诈检测反欺诈    
Abstract:

In the new era of fintech, digital technology is the core driving force of the future development of financial industry. With the new technology and the risk of financial fraud escalating, fraud detection based on digital technology has become a new research hot spot. Meantime the research direction of financial fraud detection technology has shifted from traditional methods of improving expert experience and optimizing machine learning models to exploring graph machine learning methods for social network. This article focuses on social network, based on the development process of network analysis, from different perspectives of detecting abnormal individuals, suspicious groups and unhealthy intermediaries, with different technical methods of digital financial fraud detection as the main line, the existing social-oriented relational network fraud identification methods are investigated, and the future research trends and directions of digital financial fraud detection technologies are highlighted.

Key words: big data    artificial intelligence    social network    fraud detection    anti-fraud
收稿日期: 2021-12-20 出版日期: 2024-01-10
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(71874106)
作者简介: 刘华玲(1964—),ORCID:https://orcid.org/0000-0002-3980-6955,女,博士,教授,主要从事知识管理与智能决策、数据挖掘、互联网金融研究,E-mail:liuhl@suibe.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘华玲
许珺怡
曹世杰
刘雅欣
乔梁

引用本文:

刘华玲,许珺怡,曹世杰,刘雅欣,乔梁. 面向社会关系网络的数字金融欺诈检测研究进展[J]. 浙江大学学报(理学版), 2024, 51(1): 41-54.

Hualing LIU,Junyi XU,Shijie CAO,Yaxin LIU,Liang QIAO. Research progress of digital financial fraud detection oriented to social relations network. Journal of Zhejiang University (Science Edition), 2024, 51(1): 41-54.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2024.01.006        https://www.zjujournals.com/sci/CN/Y2024/V51/I1/41

图1  数字金融欺诈检测流程
算法优势劣势时间复杂度适用范围

标签传播

算法(LPA)

(1) 时间复杂度低,接近线性复杂度,适用于大规模网络;

(2) 无须定义优化函数,无须指定社区个数

(1) 雪崩效应:社区结果不稳定,随机性强;

(2) 振荡效应:社区结果振荡,不收敛

O(m)非重叠社区
GN算法

(1) 在明确划分社团数时,可较精确地给出社团划分结果;

(2) 给出不同层次的社团划分结果,揭示关于网络层次的信息

(1) 时间复杂度高,在计算边介数时需多次计算最短路径;

(2) 若无法知道划分的社团数,算法结果相对较差

O(m2n)非重叠社区

Louvain

算法

(1) 第一次迭代以单个节点作为社区粒度,不受模块化分辨率的限制;

(2) 能够发现层次性社区结构

(1) 挖掘社区的大小,随着图的增大而增大;

(2) 社区过大,不能及时收敛

O(n?log?n)非重叠社区
SLPA

(1) 能高效实现重叠社区检测;

(2) 算法过程易修改,可适应不同规则、不同类型的网络

(1) 对于节点众多的大规模网络,分配标签会消耗大量计算资源;

(2) SLPA的随机选择策略导致算法具有随机性和不稳定性

O(Tm)重叠社区
表1  常用社区发现算法及对比
图2  GN算法输出生成的分层树
图3  Louvain算法步骤可视化
图4  电子游戏支付交易数据的网络模式
类别名称定义
出度从节点i指向其他节点的边数
入度从其他节点指向节点i的边数
二阶邻居与节点i有相同邻居的节点数
中心性点度中心性用节点的度作为重要性度量
介数中心性经过节点 i 的最短路径数占所有节点对的最短路径数的比例
紧密中心性从节点i到其他所有节点的平均最短路径距离的倒数
特征向量中心性一个节点的重要性与邻居节点数和邻居节点的重要性同时相关,将邻接矩阵所对应的特征向量 xi 作为节点vi 的特征向量重要性度量值
PageRank中心性节点i在图中的PageRank值
结构洞考虑了节点在网络中的位置
集中度集聚系数反映一个节点与邻居节点之间的互联程度,为节点i的相邻节点实际构成的连边数与可能存在的最大连边数的比值
表2  局部结构特征
1 郝光昊.数字化欺诈与金融科技反欺诈的应用[J].税务与经济,2019(6):40-47.
HAO G H. The application of digital fraud and financial technology anti-fraud[J]. Taxation and Economics, 2019(6): 40-47.
2 XU J, CHEN H. Criminal network analysis and visualization[J]. Communications of the ACM, 2005, 48(6): 100-107. DOI:10.1145/1064830. 1064834
doi: 10.1145/1064830. 1064834
3 GHOSH S, REILLY D L. Credit card fraud detection with a neural-network[C]// Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences. Wailea: IEEE, 1994: 621-630. DOI:10.1109/HICSS.1994.323314
doi: 10.1109/HICSS.1994.323314
4 SHEN A, TONG R, DENG Y. Application of classification models on credit card fraud detection[C]// International Conference on Service Systems & Service Management. Chengdu: IEEE, 2007:1-4. doi:10.1109/icsssm.2007.4280163
doi: 10.1109/icsssm.2007.4280163
5 CHAN P K, FAN W, PRODROMIDIS A L, et al. Distributed data mining in credit card fraud detection[J]. IEEE Intelligent Systems and Their Applications, 1999, 14(6): 67-74. DOI:10.1109/5254.809570
doi: 10.1109/5254.809570
6 WHEELER R, AITKEN S. Multiple algorithms for fraud detection[M]. London: Springer, 2000: 219-231. doi:10.1007/978-1-4471-0465-0_14
doi: 10.1007/978-1-4471-0465-0_14
7 MAES S, TUYLS K, VANSCHOENWINKEL B, et al. Credit card fraud detection using Bayesian and neural networks[C]//Proceedings of the 1st International NAISO Congress on Neuro Fuzzy Technologies. Cuba:ICSC-NAISO, 2002: 261-270.
8 SHEN A, TONG R, DENG Y. Application of classification models on credit card fraud detection [C]// International Conference on Service Systems & Service Management. Chengdu: IEEE, 2007:1-4. doi:10.1109/icsssm.2007.4280163
doi: 10.1109/icsssm.2007.4280163
9 BHATTACHARYYA S, JHA S, THARAKUNNEL K, et al. Data mining for credit card fraud: A comparative study[J]. Decision Support Systems, 2011, 50(3): 602-613. DOI:10.1016/j.dss.2010.08.008
doi: 10.1016/j.dss.2010.08.008
10 SRIVASTAVA A, KUNDU A, SURAL S, et al. Credit card fraud detection using hidden Markov model[J]. IEEE Transactions on Dependable and Secure Computing, 2008, 5(1): 37-48. DOI:10.1109/TDSC.2007.70228
doi: 10.1109/TDSC.2007.70228
11 SANCHEZ D, VILA M A, CERDA L, et al. Association rules applied to credit card fraud detection[J]. Expert Systems with Applications, 2009, 36(2): 3630-3640. DOI:10.1016/j.eswa. 2008.02.001
doi: 10.1016/j.eswa. 2008.02.001
12 BAHNSEN A C, STOJANOVIC A, AOUADA D, et al. Cost sensitive credit card fraud detection using Bayes minimum risk[C]// 2013 12th International Conference on Machine Learning and Applications. Miami: IEEE, 2013: 333-338. doi:10.1109/icmla.2013.68
doi: 10.1109/icmla.2013.68
13 BAHNSEN A C, STOJANOVIC A, AOUADA D, et al. Improving credit card fraud detection with calibrated probabilities[C]// Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2014: 677-685. doi:10.1137/1.9781611973440.78
doi: 10.1137/1.9781611973440.78
14 DUMAN E, ELIKUCUK I. Solving credit card fraud detection problem by the new metaheuristics migrating birds optimization[C]// Proceedings of the 12th International Conference on Artificial Neural Networks. Puerto de la Cruz: Springer-Verlag, 2013: 62-71. DOI:10.1007/978-3-642-38682-4_8
doi: 10.1007/978-3-642-38682-4_8
15 MONAMO P M, MARIVATE V, TWALA B. Unsupervised learning for robust Bitcoin fraud detection[C]// 2016 Information Security for South Africa (ISSA). Johannesburg: IEEE, 2016: 129-134. DOI:10.1109/ISSA.2016.7802939
doi: 10.1109/ISSA.2016.7802939
16 MONAMO P M, MARIVATE V, TWALA B. A multifaceted approach to Bitcoin fraud detection: Global and local outliers[C]// 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). Anaheim: IEEE, 2016: 188-194. DOI:10.1109/ICMLA.2016.0039
doi: 10.1109/ICMLA.2016.0039
17 RAI A K, DWIVEDI R K. Fraud detection in credit card data using unsupervised machine learning based scheme[C]//2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). Coimbatore: IEEE, 2020: 421-426. DOI:10.1109/ICESC48915.2020.9155615
doi: 10.1109/ICESC48915.2020.9155615
18 NIU X, WANG L, YANG X. A Comparison Study of Credit Card Fraud Detection: Supervised Versus Unsupervised[EB/OL]. [2019-04-24]. DOI:10. 48550/arXiv.1904.10604
doi: 10. 48550/arXiv.1904.10604
19 KLERKS P. The network paradigm applied to criminal organisations: Theoretical nitpicking or a relevant doctrine for investigators? Recent developments in the Netherlands[J]. Transnational Organised Crime, 2001, 24(3): 53-65.
20 SPANN D D. Fraud Analytics: Strategies and Methods for Detection and Prevention[M]. New York: John Wiley & Sons Inc, 2012: 107-125. DOI:10.1002/9781118284049.ch8
doi: 10.1002/9781118284049.ch8
21 XU J J, CHEN H. CrimeNet explorer: A framework for criminal network knowledge discovery[J]. ACM Transactions on Information Systems, 2005, 23(2): 201-226. DOI:10.1145/1059981.1059984
doi: 10.1145/1059981.1059984
22 CHEN H, ZENG D, ATABAKHSH H, et al. COPLINK: Managing law enforcement data and knowledge[J]. Communications of the ACM, 2003, 46(1): 28-34. DOI:10.1145/602421.602441
doi: 10.1145/602421.602441
23 WASSERMAN S, FAUST K. Social Network Analysis: Methods and Applications[M]. New York: Cambridge University Press, 1994. DOI:10. 2307/2291756
doi: 10. 2307/2291756
24 BAJER W E, FAULKNER R R. The social organization of conspiracy: Illegal networks in the heavy electrical equipment industry[J]. American Sociological Review, 1993,58(6): 837-860. DOI:10.2307/2095954
doi: 10.2307/2095954
25 KREBS V E. Mapping networks of terrorist cells[J]. Connections,2002,24(3):43-52.
26 PEROZZI B, Al-RFOU R, SKIENA S. Deepwalk: Online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. DOI:10.1145/2623330.2623732
doi: 10.1145/2623330.2623732
27 GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks[C]// Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864. DOI:10.1145/2939672.2939754
doi: 10.1145/2939672.2939754
28 KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[EB/OL]. [2017-02-22]. DOI: 10.48550/arXiv. 1609. 02907
doi: 10.48550/arXiv. 1609. 02907
29 HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 1025-1035. doi:10.7551/mitpress/11474.003.0014
doi: 10.7551/mitpress/11474.003.0014
30 VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[EB/OL]. [2018-02-04]. DOI: 10.48550/arXiv.1710.10903
doi: 10.48550/arXiv.1710.10903
31 BEHERA T K, PANIGRAHI S. Credit card fraud detection: A hybrid approach using fuzzy clustering & neural network[C]// 2015 2nd International Conference on Advances in Computing and Communication Engineering. Dehradun: IEEE, 2015: 494-499. DOI:10.1109/ICACCE.2015.33
doi: 10.1109/ICACCE.2015.33
32 AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description: A survey[J]. Data Mining and Knowledge Discovery, 2015, 29(3): 626-688. DOI:10.1007/s10618-014-0365-y
doi: 10.1007/s10618-014-0365-y
33 UENO K, SUZUMURA T, MARUYAMA N, et al. Efficient breadth-first search on massively parallel and distributed-memory machines[J]. Data Science and Engineering, 2017, 2(1): 22-35. DOI:10.1007/s41019-016-0024-y
doi: 10.1007/s41019-016-0024-y
34 COLLADON A F, REMONDI E. Using social network analysis to prevent money laundering[J]. Expert Systems with Applications, 2017, 67: 49-58. DOI:10.1016/j.eswa.2016.09.029
doi: 10.1016/j.eswa.2016.09.029
35 BALTOIU A, PATRASCU A, IROFTI P. Community-Level Anomaly Detection for Anti-Money Laundering[EB/OL]. [2019-10-24]. DOI: 10.48550/arXiv.1910.11313
doi: 10.48550/arXiv.1910.11313
36 ZHOU R, ZHANG Q, ZHANG P, et al. Anomaly detection in dynamic attributed networks[J]. Neural Computing and Applications, 2021, 33(6): 2125-2136. DOI:10.1007/s00521-020-05091-3
doi: 10.1007/s00521-020-05091-3
37 SAVAGE D, WANG Q, CHOU P, et al. Detection of Money Laundering Groups Using Supervised Learning in Networks[EB/OL]. [2016-08-02]. DOI:10.48550/arXiv.1608.00708
doi: 10.48550/arXiv.1608.00708
38 LUCAS Y, PORTIER P E, LAPORTE L, et al. Multiple perspectives HMM-based feature engineering for credit card fraud detection[C]// Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. Limassol: ACM, 2019: 1359-1361. DOI:10.1145/3297280.3297586
doi: 10.1145/3297280.3297586
39 ZHU X J, GHAHRAMANI Z. Learning from labeled and unlabeled data with label propagation CMU-CALD-02-107 [R]. Pittsburgh: Carnegie Mellon University, 2002.
40 GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826. DOI:10.1073/pnas. 122653799
doi: 10.1073/pnas. 122653799
41 NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113. DOI:10. 1103/physreve.69.026113
doi: 10. 1103/physreve.69.026113
42 BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. DOI:10.1088/1742-5468/2008/10/p10008
doi: 10.1088/1742-5468/2008/10/p10008
43 XIE J, SZYMANSKI B K, LIU X. SLPA: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process[C]// 2011 IEEE 11th International Conference on Data Mining Workshops. Vancouver: IEEE, 2011: 344-349. DOI:10.1109/ICDMW.2011.154
doi: 10.1109/ICDMW.2011.154
44 凡友荣, 杨涛, 孔华锋, 等. 基于知识图谱的电信欺诈通联特征挖掘方法[J]. 计算机应用与软件, 2019, 36(11): 182-187. doi:10.3969/j.issn.1000-386x.2019.11.030
FAN Y R, YANG T, KONG H F, et al. Telecommunication fraud communication feature mining method based on knowledge graph[J]. Computer Applications and Software, 2019, 36(11): 182-187. doi:10.3969/j.issn.1000-386x.2019.11.030
doi: 10.3969/j.issn.1000-386x.2019.11.030
45 CHANG Y C, LAI K T, CHOU S C T, et al. Who is the boss? Identifying key roles in telecom fraud network via centrality-guided deep random walk[J]. Data Technologies and Applications, 2020, 55: 1-18. DOI:10.1108/dta-05-2020-0103
doi: 10.1108/dta-05-2020-0103
46 CAO B, MAO M, VIIDU S, et al. HitFraud: A broad learning approach for collective fraud detection in heterogeneous information networks[C]// 2017 IEEE International Conference on Data Mining (ICDM). New Orleans: IEEE, 2017: 769-774. DOI:10.1109/ICDM.2017.90
doi: 10.1109/ICDM.2017.90
47 YANG Y, XU Y, SUN Y, et al. Mining fraudsters and fraudulent strategies in large-scale mobile social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(1): 169-179. DOI:10. 1109/tkde.2019.2924431
doi: 10. 1109/tkde.2019.2924431
48 YANG Y, XU Y, WANG C, et al. Understanding default behavior in online lending[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 2043-2052. DOI:10.1145/3357384. 3358052
doi: 10.1145/3357384. 3358052
49 BURT R S. Structural Holes: The Social Structure of Competition[M]. Cambridge: Harvard University Press, 2009.
50 LIU X, WANG X. A network embedding based approach for telecommunications fraud detection[C]// International Conference on Cooperative Design, Visualization and Engineering. Shanghai: Springer, 2018: 229-236. DOI:10.1007/978-3-030-00560-3_31
doi: 10.1007/978-3-030-00560-3_31
51 LIU W, LIU Z, YU F, et al. A scalable attribute-aware network embedding system[J]. Neurocomputing, 2019, 339: 279-291. DOI:10.1016/j.neucom.2019.01.106
doi: 10.1016/j.neucom.2019.01.106
52 VAN BELLE R, VAN DSMME C, TYTGAT H, et al. Inductive graph representation learning for fraud detection[J]. Expert Systems with Applications, 2022, 193: 116463. DOI:10.1016/j.eswa.2021. 116463
doi: 10.1016/j.eswa.2021. 116463
53 GREGORY S. Finding overlapping communities in networks by label propagation[J]. New Journal of Physics, 2010, 12(10): 103018. DOI:10.1088/1367-2630/12/10/103018
doi: 10.1088/1367-2630/12/10/103018
54 PENG L, LIN R. Fraud phone calls analysis based on label propagation community detection algorithm[C]// 2018 IEEE World Congress on Services. San Francisco: IEEE, 2018: 23-24. DOI:10.1109/SERVICES.2018.00025
doi: 10.1109/SERVICES.2018.00025
55 HOSSEINI R, REZVANIAN A. AntLP: Ant‐based label propagation algorithm for community detection in social networks[J]. CAAI Transactions on Intelligence Technology, 2020, 5(1): 34-41. DOI:10.1049/trit.2019.0040
doi: 10.1049/trit.2019.0040
56 WANG J, GUO Y, WEN X, et al. Improving graph-based label propagation algorithm with group partition for fraud detection[J]. Applied Intelligence, 2020, 50: 3291-3300. DOI:10.1007/s10489-020-01724-1
doi: 10.1007/s10489-020-01724-1
57 ZHAO P, FU X, WU W, et al. Network-based feature extraction method for fraud detection via label propagation[C]// 2019 IEEE International Conference on Big Data and Smart Computing. Kyoto: IEEE, 2019: 1-6. DOI:10. 1109/BIGCOMP. 2019.8679414
doi: 10. 1109/BIGCOMP. 2019.8679414
58 YE C, LI Y, HE B, et al. GPU-accelerated graph label propagation for real-time fraud detection[C]// Proceedings of the 2021 International Conference on Management of Data. Xi'an: ACM, 2021: 2348-2356. DOI:10.1145/3448016.3452774
doi: 10.1145/3448016.3452774
59 YUAN S, WU X, LI J, et al. Spectrum-based deep neural networks for fraud detection[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 2419-2422. DOI:10.1145/3132847.3133139
doi: 10.1145/3132847.3133139
60 YING X, WU X, BARBARA D. Spectrum based fraud detection in social networks[C]// 2011 IEEE 27th International Conference on Data Engineering. Hannover: IEEE, 2011: 912-923. DOI:10.1109/ICDE.2011.5767910
doi: 10.1109/ICDE.2011.5767910
61 TROJA E, LIN I. Fraud-resilient privacy-preserving crowd-sensing for dynamic spectrum access[C]// 2021 IEEE 93th Vehicular Technology Conference. Helsinki: IEEE, 2021: 1-5. DOI:10.1109/VTC2021- Spring51267.2021.9448648
doi: 10.1109/VTC2021- Spring51267.2021.9448648
62 CHAMI I, ABU-El-HAIJA S, PEROZZI B, et al. Machine learning on graphs: A model and comprehensive taxonomy[J]. Journal of Machine Learning Research, 2022, 23(89): 1-64.
63 XU K, HU W, LESKOVEC J, et al. How Powerful are Graph Neural Networks? [EB/OL]. [2019-02-22]. DOI:10.48550/arXiv.1810.00826
doi: 10.48550/arXiv.1810.00826
64 JIANG J, CHEN J, GU T, et al. Anomaly detection with graph convolutional networks for insider threat and fraud detection[C]// MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM). Norfolk: IEEE, 2019: 109-114. DOI:10.1109/MILCOM47813.2019.9020760
doi: 10.1109/MILCOM47813.2019.9020760
65 LYU L, CHENG J, PENG N, et al. Auto-encoder based graph convolutional networks for online financial anti-fraud[C]// 2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr). Shenzhen: IEEE, 2019: 1-6. DOI:10.1109/CIFEr.2019. 8759109
doi: 10.1109/CIFEr.2019. 8759109
66 JIANG N, DUAN F, CHEN H, et al. MAFI: GNN-based multiple aggregators and feature interactions network for fraud detection over heterogeneous graph[J]. IEEE Transactions on Big Data, 2022, 8(4): 905-919. DOI:10.1109/TBDATA.2021.3132672
doi: 10.1109/TBDATA.2021.3132672
67 YANG K, XU W. Fraud memory: Explainable memory-enhanced sequential neural networks for financial fraud detection[C]// Hawaii International Conference on System Sciences, Hawaii: IEEE, 2019. DOI:10. 24251/HICSS.2019.126
doi: 10. 24251/HICSS.2019.126
68 WANG D, LIN J, CUI P, et al. A semi-supervised graph attentive network for financial fraud detection[C]// 2019 IEEE International Conference on Data Mining (ICDM). Beijing: IEEE, 2019: 598-607. DOI:10.1109/ICDM.2019.00070
doi: 10.1109/ICDM.2019.00070
69 QIN Z, LIU Y, HE Q, et al. Explainable graph-based fraud detection via neural meta-graph search[C]// Proceedings of the 31th ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 4414-4418. DOI:10.1145/3511808.3557598
doi: 10.1145/3511808.3557598
70 WHITROW C, HAND D J, JUSZCZARK P, et al. Transaction aggregation as a strategy for credit card fraud detection[J]. Data Mining and Knowledge Discovery, 2009, 18(1): 30-55. DOI:10.1007/s10618-008-0116-z
doi: 10.1007/s10618-008-0116-z
71 NEIL D, PFEIFFER M, LIU S C. Phased LSTM: Accelerating recurrent network training for long or event-based sequences[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: NIPS, 2016: 3889-3897. DOI:10.5167/UZH-149394
doi: 10.5167/UZH-149394
[1] 郑立南, 王云. 更新视角下的上海近郊型工业园区公共活动空间网络构建[J]. 浙江大学学报(理学版), 2020, 47(6): 762-770.
[2] 杨颐, 李国清, 王健, 王海军, 翟翊辰, 黄卫星. 云端结合的书法大数据平台[J]. 浙江大学学报(理学版), 2020, 47(4): 397-407.
[3] 李君轶, 任涛, 陆路正. 游客情感计算的文本大数据挖掘方法比较研究[J]. 浙江大学学报(理学版), 2020, 47(4): 507-520.
[4] 金诚, 江婷君, 闵勇, 金小刚, 葛滢, 常杰. 在线社交网络控制实验的现状与展望[J]. 浙江大学学报(理学版), 2020, 47(1): 1-11.
[5] 邱超, 许金涛, 元晓华. 基于大数据技术的水情云数据中心设计与研究[J]. 浙江大学学报(理学版), 2019, 46(1): 92-100.