Chiral transition mechanism of Ala and Ca2+ complexes in gas phase and catalysis of water molecules
XU Ruiying1,2, LIU Fang2,3, MA Hongyuan2,3, ZHANG Xuejiao1,2, PAN Yu2,3, YANG Xiaocui2,3, WANG Zuocheng2,3
1.Theoretical Computing Center, Baicheng Normal University, Baicheng 137000, Jilin Province,China 2.Communication College, Baicheng Normal University, Baicheng 137000, Jilin Province, China 3.College of Physics, Baicheng Normal University, Baicheng 137000, Jilin Province, China
Abstract:The catalysis of water molecules and the chiral transition of two stable configurations of alanine (Ala) and Ca2+ complexes in gas phase have been studied using the M06 method based on density functional theory. The study shows that the Ala_1·Ca2+ chiral transition has two pathways a and b. In pathway a, α-H is transferred merely using carbonyl O atom as a bridge. In pathway b, the proton on the amino group transfers to α-C from inside paper after α-H is transferred to carbonyl O atom. The Ala_2·Ca2+ chiral transition has four pathways a, b, c and d. In pathway a, α-H is transferred merely using carbonyl O atom as a bridge after the transition of proton on the carboxyl group. In pathway b, α-H is transferred to carbonyl O atom and then proton transfers from the amino group N atom to α-C after the transition of proton on the carboxyl group. In pathway c, α-H is transferred to the amino group N atom after the coordination bond between calcium and nitrogen is broken. In pathway d, the coordination bond between calcium and nitrogen is broken and Ala_2·Ca2+ is isomerized to Ala_1·Ca2+, then Ala_1·Ca2+ achieves the chiral transition. The potential energy surface calculation shows that the dominant pathway of the chiral transition of Ala_1·Ca2+ is pathway a, and the total energy barrier is 134.8 kJ·mol-1. The dominant pathway of the chiral transition of Ala_2·Ca2+ is pathway d, and the total energy barrier is 235.3 kJ·mol-1. The catalysis of water molecules then reduces them to 40.8 kJ·mol-1 and 141.3 kJ·mol-1 respectively. The results show that Ca2+ has a catalytic effect on the chiral transition of Ala, and water molecule has an excellent catalytic effect on the chiral transition of Ala and Ca2+ complexes.
徐锐英, 刘芳, 马宏源, 张雪娇, 潘宇, 杨晓翠, 王佐成. 气相环境下丙氨酸Ca2+配合物的手性转变机理及水分子的催化作用[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641.
XU Ruiying, LIU Fang, MA Hongyuan, ZHANG Xuejiao, PAN Yu, YANG Xiaocui, WANG Zuocheng. Chiral transition mechanism of Ala and Ca2+ complexes in gas phase and catalysis of water molecules. Journal of ZheJIang University(Science Edition), 2020, 47(5): 630-641.
1 FISHER G H, D'ANIELLO A, VETERE A,et al. Free D-aspartate and D-alanine in normal and alzheimer brain [J]. Brain Research Bulletin, 1991, 26(6): 983-985. DOI:10.1016/0361-9230(91)90266-M 2 THOMPSON R J, BOUWER H G, PORTNOY D A, et al. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth [J]. Infection and Immunity, 1998, 66(8): 3552-3561. DOI: 10.1111/ j.1574-695X.1998.tb01180 3 ALVAREZ L, ESPAILLAT A, HERMOSO J A, et al. Peptidoglycan remodeling by the coordinated action of multispecific enzymes[J]. Microb Drug Resist, 2014, 20(3): 190-198. DOI: 10.1089/mdr.2014.0047 4 郭笑,杜信眉,程磊. D?丙氨酸在细菌中的功能和代谢研究进展[J]. 口腔疾病防治,2019,27(4):264-266. DOI:10.12016/j.issn.2096-1456.2019.04.012 GUO X, DU X M, CHENG L, et al. Research progress lon the function and metabolism of D?alanine in bacteria[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019,27(4):264-266. DOI: 10.12016/j.issn.2096-1456.2019.04.012 5 蒋光玉,章晖,刘洋,等. 基于微生物同化作用的 D?丙氨酸生产工艺研究[J]. 氨基酸和生物资源, 2010,32(4): 41-45. DOI: 10.14188/j.ajsh.2010.04.007 JIANG G Y, ZHANG H, LIU Y, et al. Research on D?alanine production technology based on microbial assimilation[J]. Amino Acids&Biotic Resources, 2010, 32(4): 41-45. DOI:10.14188/j.ajsh.2010.04.007 6 蒋木庚,张湘宁,蒋昊峰,等. D,L-氨基酸和二肽甜味剂产业化技术[J]. 南京工业大学学报, 2005, 27(1):106-110. DOI: 10.3969/j.issn.1671-7627.2005.01.024 JIANG M G, ZHANG X N, JIANG H F, et al. Industrialization technology of D, L?amino acid and dipeptide sweetener[J]. Journal of Nanjing University of Technology, 2005, 27(1): 106-110. DOI: 10.3969/j.issn.1671-7627.2005.01.024 7 WANG W Q, LIU Y N, GONG Y, et al. Chiral molecules parity breaking: The research on D? and L?alanine variable temperature neutron structure [J]. Acta PhysicO?Chimica Sinica, 2004, 20(11): 1345-1351. 8 王佐成,刘凤阁,吕洋,等. 孤立条件下α-丙氨酸分子手性转变机制的密度泛函理论[J]. 吉林大学学报(理学版), 2014, 52(4): 825-830. DOI:10.13413/j.cnki.jdxblxb.2014.04.38 WANG Z C, LIU F G, LYU Y, et al. Chiral transformation mechanism of α?alanine under isolated condition by density functional theory[J]. Journal of Jilin University (Science Edition), 2014, 52(4): 825-830. DOI:10.13413/j.cnki.jdxblxb.2014.04.38 9 王佐成,高峰,赵衍辉,等. α-丙氨酸分子手性转变反应通道及水分子作用的理论研究[J]. 浙江大学学报(理学版), 2015, 42(2): 189-197. DOI:10.3785/j.issn.1008-9497.2015.02.013 WANG Z C,GAO F, ZHAO Y H, et al. Theoretical research on the chiral transformation pathway of α-alanine and effect of water molecules [J]. Journal of Zhejiang University ( Science Edition ), 2015, 42(2): 189-197. DOI:10.3785/j.issn.1008-9497.2015.02.013 10 李 忠,佟华,杨晓翠,等. 基于氨基作H转移桥梁单体α?丙氨酸的手性转变机理[J]. 复旦学报(自然科学版),2015, 54(5): 642-647. DOI: 10.15943/j. cnki. fdxb-jns. 2015.05.014 LI Z, TONG H, YANG X C, et al. The chiral transition mechanism of monomer α-alanine based on amino as H transfer bridge [J]. Journal of Fudan University ( Natural Sciences ), 2015, 54(5): 102-108. DOI: 10.15943/j. cnki. fdxb-jns. 2015.05.014 11 田子德,高峰,杨晓翠,等. 具有氨基和羧基间单氢键的α-Ala分子旋光异构机理及水和羟自由基的作用[J]. 复旦学报(自然科学版), 2018, 57(4): 517-526. DOI:10.15943/j.cnki.fdxb-jns. 2018.04.015 TIAN Z D, GAO F, YANG X C, et al. Mechanism of optical isomerism of α-Ala molecules with hydrogen bonds between amino and carboxyl groups and roles of water and hydroxyl radicals[J]. Journal of Fudan University (Natural Sciences), 2018, 57(4): 517-526. DOI: 10.15943/j.cnki.fdxb-jns. 2018.04.015 12 WANG Z C, LIU Y F, YAN H Y, et al.Theoretical investigations of the chiral transition of α?amino acid confined in various sized armchair boron?nitride nanotubes [J].The Journal of Physical Chemistry A,2017, 121(8): 1833-1840. DOI:10.1021/acs.jpca.7b00079 13 李冰,潘宇,徐锐英,等. 气相环境下Cu2+催化α?Ala手性对映体转变的机理[J].武汉大学学报(理学版), 2019, 65(6): 621-628. DOI:10.14188/j.1671-8836.2019.06.013 LI B, PAN Y, XU R Y, et al. Mechanism of chiral enantiomer transition of α-Ala catalyzed by Cu2+ in gas phase environment[J]. Journal of Wuhan University(Science Edition), 2019, 65(6): 621-628. DOI:10.14188/j.1671-8836.2019.06.013 14 李铭,邹颖,郭寒. 钙离子在内质网应激中的作用[J]. 动物医学进展, 2018(9): 112-116. DOI: 10.16437/j.cnki.1007-5038.2018.09.021 LI M, ZOU Y, GUO H. The role of calcium ions in endoplasmic reticulum stress [J]. Progress in Veterinary Medicine, 2018(9):112-116. DOI:10.16437/j.cnki.1007-5038.2018.09.021 15 王云堂. 钙在植物营养中的作用分析[J]. 种子科技,2019(6) : 32-33. DOI: 10.3969/j.issn.1005-2690.2019.06.031 WANG Y T. Analysis of the role of calcium in plant nutrition[J]. Seed Scicence & Technology,2019(6) : 32-33. DOI: 10.3969/j.issn.1005-2690.2019.06.031 16 STRITTMATTER E F, LEMOFF A S, WILLIAMS E R. Structure of cationized glycine, Gly·M2+(M=Be, Mg, Ca, Sr, Ba) in the gas phase:Intrinsic effect of cation size on zwitterion stability[J]. J Phys Chem A, 2000, 104(43): 9793-9796. 17 REMKO M, RODE B M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine[J]. J Phys Chem A,2006, 110(5): 1960-1967. DOI: 10.1021/jp054119b 18 REMKO M, FITZ D, RODE B M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of L?histidine and zwitterionic L?histidine[J]. Amino Acids, 2010, 39(5): 1309-1319. DOI: 10.1007/s00726-010-0573-8 19 REDDY A S, SASTRY N G. Cation [M=H+, Li+, Na+, K+, Ca2+, Mg2+, NH+4] inter-actions with the aromatic motifs of naturally occurring amino acids: A theoretical study[J]. The Journal of Chemical Physics A, 2005, 109(39): 8893-8903. 20 和芹, 王克诚, 周立新. 甘氨酸与二价金属离子相互作用的理论研究[J].南开大学学报(自然科学版),2007(4):36-41. DOI: 10.3969/j.issn.0465-7942.2007.04.008 HE Q, WANG K C, ZHOU L X. Theoretical study for the interraction between glycine and divalent metal cations[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2007(4):36-41. DOI: 10.3969/j.issn.0465-7942.2007.04.008 21 刘芳,马宏源,潘宇,等. 气相环境下K+催化丙氨酸分子手性对映体转变的机理[J]. 厦门大学学报(自然科学版), 2020,59(6): 897-903. DOI:10.6043/j.issn.0438-0479.201910017 LIU F, MA H Y, PAN Y, et al. Mechanism of alanine chiral enantiomer transition catalyzed by K+ in gas phase[J]. Journal of Xiamen University (Natural Sciences), 2020,59(6):897-903. DOI:10.6043/j.issn.0438-0479. 201910017 22 ZHAO Y, TRUHLAR D G. Density functionals with broad applicability in chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167. DOI: 10.1021/ar700111a 23 LI X, WANG H P, BOWEN K H, et al. Negative ion photoelectron spectroscopy of the copper?aspartic acid anion and its hydrated complexes[J].The Journal of Chemical Physics, 2010,133(8): 084303(1-6. DOI: 10.1063/1.3466923 24 GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. The Journal of Chemical Physics, 1979, 70(4): 1593-1598. DOI: 10.1063/ 1.437698 25 HRATCHIAN H P, SCHLEGEL H B. Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method[J]. J Chem Theory and Comput, 2005(1): 61-69. DOI: 10.1021/ct0499783 26 FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09. Revision E.01 [Z].Wallingford CT : Gaussian, Inc, 2015. 27 SUENRAM R D, LOVAS F J. Millimeter wave spectrum of glycine, a new conformer[J]. Journal of the American Chemical Society, 1980, 102(24): 7180-7184. DOI: 10.1021/ja00544a002 28 王佐成,范志琳,程彦明,等。半胱氨酸分子手性转变及水分子的催化机理[J]. 武汉大学学报 ( 理学版 ), 2016, 62(4): 368-374. DOI:10.14188/j.1671-8836.2016.04.011 WANG Z C, FAN Z L, CHENG Y M, et al. Chiral transformation of cysteine molecules and catalytic mechanism of water molecules [J]. Journal of Wuhan University ( Science Edition), 2016, 62(4): 368-374. DOI:10.14188/j.1671-8836.2016.04.011(Ch) 29 王彦全,王佐成, 闫红彦, 等. 水环境下基于氨基作氢迁移桥梁α?丙氨酸的旋光异构机制[J]. 中山大学学报( 自然科学版 ), 2016, 55(5): 57-65. DOI: 10.13471/j.cnki.acta.snus.2016.05.011 WANG Y Q, WANG Z C, YAN H Y, et al. Chiral transition mechanism of α?alanine molecule under the water environment based on using anmino as hydrogen transfer bridges [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(5): 57- 65. DOI: 10.13471/j.cnki.acta.snus.2016.05.011(Ch) 30 刘 芳,高 峰,闫红彦, 等. 天门冬氨酸分子手性转变机理及水分子和羟自由基的催化作用[J]. 复旦学报( 自然科学版 ),2016,55 (2): 215-222. DOI:10.15943/j.cnki.fdxb-jns.2016.02.012 LIU F,GAO F,YAN H Y,et al. Chiral transformation mechanism of aspteine molecules and catalytic action of water molecules hydroxyl free radicals[J]. Journal of Fudan University ( Natural Sciences ), 2016,55 (2): 215-222. DOI:10.15943/j.cnki.fdxb-jns.2016.02.012