Abstract:Studies about natural gravels are significant for understanding of regional tectonics and climate change, and especially the gravel size is an important parameter in geology. To provide users with a more comprehensive understanding and application background of gravel statistical methods, we summarize two types of gravel statistical methods (surface gravel statistics methods and stratigraphic gravel statistics methods) with the operation of gravel statistical methods, sampling process, sample size, error analysis, and applicable conditions. The surface gravel statistics methods usually include the Wolman pebble count and area sampling. The Wolman pebble count emphasizes random sampling and is more suitable for gravel diameter larger than 2 mm to study the downstream fining of sediment in gravel-bed rivers. The area sampling is mostly used to explore natural phenomena of the gravel-sand transition in rivers and the characteristic of aquatic habitats due to its suitable gravel size range up to fine-grained sand. In contrast, the stratigraphic gravel statistics methods emphasize the stratification of gravel and apply the volumetric sampling. Previous researchers developed several kinds of mesh sieves based on corresponding research purposes. And the gravel size range can also reach to fine sand, which is most suitable for studying the response of gravel grain sizes to climate and tectonics, streambed monitoring and sediment transport analysis. This comprehensive study of the gravel statistical methods indicates that the choice of different methods largely depends on the research purpose and field working conditions which suggests us to make flexible selection based on specific situations.
1 DULLER R A, WHITTAKER A C, FEDELE J J, et al. From grain size to tectonics[J]. Journal of Geophysical Research: Earth Surface, 2010, 115:F03022(1-19). DOI: 10.1029/2009JF001495 2 WHITTAKER A C, DULLER R A, SPRINGETT J, et al. Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply[J]. Geological Society of America Bulletin, 2011, 123(7/8): 1363-1382. DOI: 10.1130/b30351.1 3 ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. DOI: 10.1038/nature06586 4 BROOKE S A S, WHITTAKER A C, ARMITAGE J J, et al. Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in grain size, Death Valley, California[J]. Journal of Geophysical Research(Earth Surface), 2018, 123(8): 2039-2067. DOI: 10.1029/2018jf004622 5 D'ARCY M, WHITTAKER A C, RODABOLUDA D C, et al. Measuring alluvial fan sensitivity to past climate changes using a self-similarity approach to grain-size fining, Death Valley, California[J]. Sedimentology, 2017, 64(2): 388-424. DOI: 10.1111/sed.12308 6 DULLER R A, WHITTAKER A C, SWINEHART J B, et al. Abrupt landscape change post-6 Ma on the central Great Plains, USA[J]. Geology, 2012, 40(10): 871-874. DOI: 10.1130/g32919.1 7 HARRIES R M, KIRSTEIN L A, WHITTAKER A C, et al. Evidence for self-similar bedload transport on Andean Alluvial Fans, Iglesia Basin, south central Argentina[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2292-2315. DOI: 10.1029/2017JF004501 8 PARSONS A J, MICHAEL N A, WHITTAKER A C, et al. Grain-size trends reveal the late orogenic tectonic and erosional history of the south-central Pyrenees, Spain[J]. Journal of the Geological Society, 2012, 169(2): 111-114. DOI: 10.1144/0016-76492011-087 9 WHITTAKER A C, ATTAL M L, ALLEN P A. Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics[J]. Basin Research, 2010, 22(6): 809-828. DOI: 10.1111/j.1365-2117.2009.00447.x 10 GRANT G E. The geomorphic response of gravel-bed rivers to dams: Perspectives and prospects[C]// CHURCH M, BIRON P M, ROY A G. Gravel?Bed Rivers: Processes, Tools, Environments. Chichester: John Wiley & Sons, Ltd, 2012: 165-181. DOI: 10.1002/9781119952497.ch15 11 KONDOLF G M. PROFILE: hungry water: Effects of dams and gravel mining on river channels[J]. Environmental Management, 1997, 21(4): 533-551. DOI: 10.1007/s002679900048 12 HADDADCHI A, BOOKER D J, MEASURES R J. Predicting river bed substrate cover proportions across New Zealand[J]. Catena, 2018, 163: 130-146. DOI: 10.1016/j.catena.2017.12.014 13 KONDOLF G M, WOLMAN M G. The sizes of salmonid spawning gravels[J]. Water Resources Research, 1993, 29(7): 2275-2285. DOI: 10.1029/93WR00402 14 ATTAL M, LAV? J. Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts[J]. Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, Penrose Conference Series, 2006: 143-171. 15 ATTAL M, MUDD S M, HURST M D, et al. Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California)[J]. Earth Surface Dynamics, 2015, 3(1): 201-222. DOI: 10.5194/esurf-3-201-2015 16 GOMEZ B, ROSSER B J, PEACOCK D H, et al. Downstream fining in a rapidly aggrading gravel bed river[J]. Water Resources Research, 2001, 37(6): 1813-1823. DOI: 10.1029/2001wr900007 17 MILLER K L, SZAB? T, JEROLMACK D J, et al. Quantifying the significance of abrasion and selective transport for downstream fluvial grain size evolution[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(11): 2412-2429. DOI: 10.1002/2014JF003156 18 MOUSSAVI-HARAMI R, MAHBOUBI A, KHANEHBAD M. Analysis of controls on downstream fining along three gravel?bed rivers in the Band-e-Golestan drainage basin NE Iran[J]. Geomorphology, 2004, 61(1/2): 143-153. DOI: 10.1016/j.geomorph.2003.12.005 19 PAOLA C, PARKER G, SEAL R, et al. Downstream fining by selective deposition in a laboratory flume[J]. Science, 1992, 258(5089): 1757-1760. DOI: 10.1126/science.258.5089.1757 20 PAOLA C, SEAL R. Grain size patchiness as a cause of selective deposition and downstream fining[J]. Water Resources Research, 1995, 31(5): 1395-1407. DOI: 10.1029/94wr02975 21 SURIAN N. Downstream variation in grain size along an Alpine river:Analysis of controls and processes[J]. Geomorphology, 2002, 43(1/2): 137-149. DOI: 10.1016/s0169-555x(01)00127-1 22 WOHL E E, ANTHONY D J, MADSEN S W, et al. A comparison of surface sampling methods for coarse fluvial sediments[J]. Water Resources Research, 1996, 32(10): 3219-3226. DOI: 10.1029/96WR01527 23 WOLMAN M G. A method of sampling coarse river-bed material[J]. Transactions, American Geophysical Union, 1954, 35(6):951-956. DOI: 10.1029/TR035i006p00951 24 HEDGER R D, DODSON J J, BOURQUE J F, et al. Improving models of juvenile Atlantic salmon habitat use through high resolution remote sensing[J]. Ecological Modelling, 2006, 197(3/4): 505-511. DOI: 10.1016/j.ecolmodel.2006.03.028 25 BUSCOMBE D. Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin sections, and other natural granular patterns[J]. Sedimentology, 2013, 60(7): 1709-1732. DOI: 10.1111/sed.12049 26 RUBIN D M. A Simple autocorrelation algorithm for determining grain size from digital images of sediment[J]. Journal of Sedimentary Research, 2004, 74(1): 160-165. DOI: 10.1306/052203740160 27 WARRICK J A, RUBIN D M, RUGGIERO P, et al. Cobble cam: grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses[J]. Earth Surface Processes and Landforms, 2009, 34(13): 1811-1821. DOI: 10.1002/esp.1877 28 FU K, FANG X, GAO J, et al. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan Plateau[J]. Science in China (Ser D) : Earth Sciences, 2007, 50: 81-91. DOI: 10.1007/s11430-007-2021-5 29 舒霞, 吴玉程, 陶庆秀, 等. Mastersizer 2000分析报告解析[J]. 实验技术与管理, 2011, 28(2): 37-41. DOI: 10.3969/j.issn.1002-4956.2011.02.012 SHU X, WU Y C, TAO Q X, et al. An analysis on report of Mastersizer 2000 laser particle size analyzer[J]. Experimental Technology and Management, 2011, 28(2): 37-41. DOI: 10.3969/j.issn.1002-4956.2011.02.012 30 BLOTT S J, PYE K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248. DOI: 10.1002/esp.261 31 FRIPP J B, DIPLAS P. Surface sampling in gravel streams[J]. Journal of Hydraulic Engineering, 1993, 119(4): 473-490. DOI: 10.1061/(ASCE)0733-9429(1993)119:4(473) 32 LEOPOLD L B. An improved method for size distribution of stream bed gravel[J]. Water Resources Research, 1970, 6(5): 1357-1366. DOI: 10.1029/WR006i005p01357 33 MARCUS W A, LADD S C, STOUGHTON J A, et al. Pebble counts and the role of user-dependent bias in documenting sediment size distributions[J]. Water Resources Research, 1995, 31(10): 2625-2631. DOI: 10.1029/95wr02171 34 COWIE P A, WHITTAKER A C, ATTAL M, et al. New constraints on sediment-flux-dependent river incision: Implications for extracting tectonic signals from river profiles[J]. Geology, 2008, 36(7): 535-538. DOI: 10.1130/g24681a.1 35 DINGLE E H, SINCLAIR H D, ATTAL M, et al. Subsidence control on river morphology and grain size in the Ganga Plain[J]. American Journal of Science, 2016, 316(8): 778-812. DOI: 10.2475/08.2016.03 36 GAREFALAKIS P, SCHLUNEGGER F. Link between concentrations of sediment flux and deep crustal processes beneath the European Alps[J]. Scientific Reports, 2018, 8(1): 183. DOI: 10.1038/s41598-017-17182-8 37 GRAN K B. Strong seasonality in sand loading and resulting feedbacks on sediment transport, bed texture, and channel planform at Mount Pinatubo, Philippines[J]. Earth Surface Processes and Landforms, 2012, 37(9): 1012-1022. DOI: 10.1002/esp.3241 38 ADAMS J. Gravel size analysis from photographs[J]. Journal of the Hydraulics Division, 1979, 105(10): 1247-1255. 39 BUNTE K, ABT S R. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring[C]//General Technical Report RMRS-GTR-74. Fort Collins: United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2001. DOI: 10.2737/RMRS-GTR-74 40 KELLERHALS R, BRAY D I. Sampling procedures for coarse fluvial sediments[J]. Journal of the Hydraulics Division, 1971, 97(8): 1165-1180. 41 EATON B C, MOORE R D, MACKENZIE L G. Percentile-based grain size distribution analysis tools (GSDtools)-estimating confidence limits and hypothesis tests for comparing two samples[J]. Earth Surface Dynamics, 2019, 7(3): 789-806. DOI: 10.5194/esurf-7-789-2019 42 GRAHAM D J, ROLLET A J, PI?GAY H, et al. Maximizing the accuracy of image-based surface sediment sampling techniques[J]. Water Resources Research, 2010, 46(2):W02508(1-15). DOI: 10.1029/2008WR006940 43 BUNTE K, ABT S R. Sampling frame for improving pebble count accuracy in coarse gravel-bed streams1[J]. JAWRA Journal of the American Water Resources Association, 2001, 37(4): 1001-1014. DOI: 10.1111/j.1752-1688.2001.tb05528.x 44 DUBILLE M, LAV? J. Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits[J]. Basin Research, 2015, 27(1): 26-42. DOI: 10.1111/bre.12071 45 DIPLAS P, FRIPP J B. Properties of various sediment sampling procedures[J]. Journal of Hydraulic Engineering, 1992, 118(7): 955-970. DOI: 10.1061/(ASCE)0733-9429(1992)118:7(955) 46 林秀斌, 陈汉林, WYRWOLLK H, 等. 青藏高原东北部隆升:来自宁夏同心小洪沟剖面的证据[J]. 地质学报, 2009, 83(4): 455-467. DOI: 10.3321/j.issn:0001-5717.2009.04.001 LIN X B, CHEN H L, WYRWOLL K H, et al. Uplift of the northeastern Tibetan Plateau: Evidences from the Xiaohonggou section in Tongxin, Ningxia[J]. Acta Geological Sinica, 2009,83(4):454-467. DOI: 10.3321/j.issn:0001-5717.2009.04.001 47 廖林, 陈汉林, 程晓敢, 等. 帕米尔东北缘新生代隆升活动: 来自奥依塔格剖面砾石统计的证据[J]. 地球科学——中国地质大学学报, 2012, 37(4): 791-804. DOI: 10.3799/dqkx.2012.088 LIAO L, CHEN H L , CHENG X G, et al. Cenozoic uplift of the northeastern Pamir: Evidence from the gravel counting results of the Oytag section[J]. Earth Science-Journal of China University of Geosciences, 2012, 37 (4): 791-801. DOI: 10.3799/dqkx.2012.088 48 WILCOCK P R, STULL R S. Magnetic paint sampling of the surface and subsurface of clastic sediment beds[J]. Journal of Sedimentary Research, 1989, 59(4): 626-627. DOI: 10.1306/212F9025-2B24-11D7-8648000102C1865D. 49 DIPLAS P, SUTHERLAND A J. Sampling techniques for gravel sized sediments[J]. Journal of Hydraulic Engineering, 1988, 114(5): 484-501. DOI: 10.1061/(ASCE)0733-9429(1988)114:5(484) 50 BAPTISTA P, CUNHA T R, GAMA C, et al. A new and practical method to obtain grain size measurements in sandy shores based on digital image acquisition and processing[J]. Sedimentary Geology, 2012, 282: 294-306. DOI: 10.1016/j.sedgeo.2012.10.005 51 BUSCOMBE D. Estimation of grain-size distributions and associated parameters from digital images of sediment[J]. Sedimentary Geology, 2008, 210(1/2): 1-10. DOI: 10.1016/j.sedgeo.2008.06.007 52 BUSCOMBE D, MASSELINK G. Grain-size information from the statistical properties of digital images of sediment[J]. Sedimentology, 2009, 56(2): 421-438. DOI: 10.1111/j.1365-3091.2008.00977.x 53 BUSCOMBE D, RUBIN D M, WARRICK J A. A universal approximation of grain size from images of noncohesive sediment[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F2):F02015(1-17. DOI: 10.1029/2009JF001477 54 CASTRO P I, VICENS R S. Grain-Size measurements of fluvial gravel bars using object-based image analysis[J]. Revista Brasileira de Geomorfologia, 2018,19(1):DOI: 10.20502/rbg. v19i1.1206 55 CHANG F J, CHUNG C H. Estimation of riverbed grain-size distribution using image-processing techniques[J]. Journal of Hydrology, 2012, 440/441: 102-112. DOI: 10.1016/j.jhydrol.2012.03.032 56 CHENG Z, LIU H. Digital grain-size analysis based on autocorrelation algorithm[J]. Sedimentary Geology, 2015, 327: 21-31. DOI: 10.1016/j.sedgeo.2015.07.008 57 CISLAGHI A, CHIARADIA E A, BISCHETTI G B. A comparison between different methods for determining grain distribution in coarse channel beds[J]. International Journal of Sediment Research, 2016, 31: 97-109. DOI: 10.1016/j.ijsrc.2015.12.002 58 GRAHAM D J, REID I, RICE S P. Automated sizing of coarse-grained sediments: Image-processing procedures[J]. Mathematical Geology, 2005, 37(1): 1-28. DOI: 10.1007/s11004-005-8745-x 59 GRAHAM D J, RICE S P, REID I. A transferable method for the automated grain sizing of river gravels[J]. Water Resources Research, 2005, 41(7): W07020(1-12) . DOI: 10.1029/2004WR003868 60 PURINTON B, BOOKHAGEN B. Introducing pebble counts: A grain-sizing tool for photo surveys of dynamic gravel-bed rivers[J]. Earth Surface Dynamics, 2019,7(3):859-877. DOI: 10.5194/esurf-2019-20 61 MARION A, FRACCAROLLO L. New conversion model for areal sampling of fluvial sediments[J]. Journal of Hydraulic Engineering, 1997, 123(12): 1148-1151. DOI: 10.1061/(ASCE)0733-9429(1997)123:12(1148) 62 PEARSON E, SMITH M W, KLAAR M J, et al. Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers?[J]. Geomorphology, 2017, 293: 143-155. DOI: 10.1016/j.geomorph.2017.05.015 63 IBBEKEN H, SCHLEYER R. Photo-sieving: A method for grain-size analysis of coarse-grained, unconsolidated bedding surfaces[J]. Earth Surface Processes and Landforms, 1986, 11(1): 59-77. DOI: 10.1002/esp.3290110108 64 CARBONNEAU P E, LANE S N, BERGERON N E. Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery[J]. Water Resources Research, 2004, 40(7): W07202(1-11). DOI: 10.1029/2003WR002759 65 VERD? J M, BATALLA R J, MARTíNEZ-CASASNOVAS J A. High-resolution grain-size characterisation of gravel bars using imagery analysis and geo-statistics[J]. Geomorphology, 2005, 72(1-4): 73-93. DOI: 10.1016/j.geomorph.2005.04.015 66 DUGDALE S J, CARBONNEAU P E, CAMPBELL D. Aerial photosieving of exposed gravel bars for the rapid calibration of airborne grain size maps[J]. Earth Surface Processes and Landforms, 2010, 35: 627-639. DOI: 10.1002/esp.1936 67 SIME L C, FERGUSON R I. Information on grain sizes in gravel-bed rivers by automated image analysis[J]. Journal of Sedimentary Research, 2003, 73(4): 630-636. DOI: 10.1306/112102730630 68 BUTLER J B, LANE S N, CHANDLER J H. Automated extraction of grain-size data from gravel surfaces using digital image processing[J]. Journal of Hydraulic Research, 2001, 39(5): 519-529. DOI: 10.1080/00221686.2001.9628276 69 CURRAN J C, WATERS K A. The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(7): 1484-1497. DOI: 10.1002/2014JF003143 70 PARKER G, SUTHERLAND A J. Fluvial armor[J]. Journal of Hydraulic Research, 1990, 28(5): 529-544. DOI: 10.1080/00221689009499044 71 ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897. 72 CHEN X W, CHEN H L, SOBEL E R, et al. Convergence of the Pamir and the South Tian Shan in the late Cenozoic: Insights from provenance analysis in the Wuheshalu section at the convergence area[J]. Lithosphere, 2019, 11(4): 507-523. DOI: 10.1130/L1028.1 73 RENGERS F, WOHL E. Trends of grain sizes on gravel bars in the Rio Chagres, Panama[J]. Geomorphology, 2007, 83(3/4): 282-293. DOI: 10.1016/j.geomorph.2006.02.019 74 RICE S. The nature and controls on downstream fining within sedimentary links[J]. Journal of Sedimentary Research, 1999, 69(1): 32-39. DOI: 10.1306/D426895F-2B26-11D7-8648000102C1865D 75 CHURCH M, HASSAN M A, WOLCOTT J F. Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations[J]. Water Resources Research, 1998, 34(11): 3169-3179. DOI: 10.1029/98wr00484 76 LAMB M P, VENDITTI J G. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout[J]. Geophysical Research Letters, 2016, 43(8): 3777-3785. DOI: 10.1002/2016gl068713 77 KNIGHTON A D. The gravel-sand transition in a disturbed catchment[J]. Geomorphology, 1999, 27(3/4): 325-341. DOI: 10.1016/s0169-555x(98)00078-6