Abstract:Congruence in elementary number theory is favored by many scholars. In this paper, using the elementary method, the properties of trigonometric sums and the estimation of Kloosterman sums, we study the distribution of integers and their inverse on short intervals and solve a number theory conjecture problem proposed by professor CAI Tianxin from two different angles. Assume that p is an odd prime number except for 3,5,7, and 13, there is at least one set of integers 1<i,j<p2 which satisfy the congruence i?j≡1?mod?p. It not only shows that the congruence equation has a solution, but also gives a strong asymptotic formula, indicating that the number of solutions is less than M2p+Op12ln2p.
赵艳, 吕星星. 短区间中整数及其逆的分布[J]. 浙江大学学报(理学版), 2020, 47(5): 531-534.
ZHAO Yan, LYU Xingxing. Distribution of an integer and its inverse in a short interval. Journal of ZheJIang University(Science Edition), 2020, 47(5): 531-534.
1 APOSTOL T M. Introduction to Analytic Number Theory[M]. New York: Springer-Verlag, 1976. 2 VAN HAMME L. Some conjectures concerning partial sums of generalized hyper geometric series in p-adic functional analysis[J]. Lecture Notes in Pure and Applied Mathematics, 1997, 192: 223-236. 3 PAN H, SUN Z W. A combinatorial identity with application to Catalan numbers[J]. Discrete Math ematics, 2006, 306(16): 1921-1940. DOI: 10.1016/j.disc.2006.03.050 4 ZHAO L L, PAN H, SUN Z W. Congruences for the second-order Catalan numbers[J]. Proceedings of the American Mathematical Society, 2010, 138(1): 37-46. DOI: 10.1090/S0002-9939-09-10067-9 5 DUAN, R, SHEN S M. Bernoulli polynomials and their some new congruence properties[J]. Symmetry, 2019, 11(3): 365. DOI: 10.3390/sym11030365 6 HOU Y W, SHEN S M. The Euler numbers and recursive properties of Dirichlet L-functions[J]. Advances in Difference Equations, 2018: 397. DOI: 10.1186/s13662-018-1853-y 7 ZHANG W P. Some identities involving the Euler and the central factorial numbers[J]. The Fibonacci Quarterly, 1998, 36(2): 154-157. 8 ZHAO J H, CHEN Z Y. Some symmetric identities involving Fubini polynomials and Euler numbers[J]. Symmetry, 2018, 10(8): 303. DOI: 10.3390/sym10080303 9 ZHANG W P, XU Z F. On a conjecture of the Euler numbers[J]. Journal of Number Theory, 2007, 127 (2): 283-291. DOI: 10.1016/j.jnt.2007.04.004 10 CHO B, PARK H. Evaluating binomial convolution sums of divisor functions in terms of Euler and Bernoulli polynomials[J]. International Journal of Number Theory, 2018, 14(2): 509-525. DOI: 10.1142/S1793042118500318 11 WANG L Q, CAI, T X. A curious congruence modulo prime powers[J]. Journal of Number Theory, 2014, 144(14): 15-24. DOI: 10.1016/j.jnt.2014.04.004 12 SUN Z H. Congruences concerning Bernoulli numbers and Bernoulli polynomials[J]. Discrete Applied Mathematics, 2000, 105(1): 193-223. DOI: 10.1016/s0166-218x(00)00184-0 13 ZHOU X, CAI T X. A generalization of a curious congruence on harmonic sums[J]. Proceedings of the American Mathematical Society, 2007, 135(5): 1329-1334. DOI: 10.1090/s0002-9939-06-08777-6 14 CHOWLA S. On Kloosterman's sum[J]. Norkse Vid Selbsk Fak Frondheim, 1967, 40(4): 70-72. 15 IWANIEC H. Topics in Classical Automorphic Forms[M]. Providence: American Mathematical Society Publications, 1997: 61-63. DOI: http://dx.doi.org/10.1090/gsm/017