Complete moment convergence for moving average processes generated by NSD sequences
GAO Yunfeng1, ZOU Guangyu2
1.College of Electrical and Information Engineering, Jilin Agriculture Science and Technology College, Jilin 132101,Jilin Province, China 2.School of Science, Changchun Institute of Technology, Changchun 130012, China
Abstract:Let {Yi, -∞ < i < ∞} be a sequence of identically distributed NSD random variables, and {ai, -∞ < i < ∞} be an absolutely summable sequence of real numbers. By using the moment inequality of NSD sequence and the property of slowly varying function, we obtain the complete moment convergence and strong law of large numbers for moving average processes generated by NSD sequences under some suitable conditions, which promote and improve the corresponding results.
高云峰, 邹广玉. NSD序列生成的移动平均过程的矩完全收敛性[J]. 浙江大学学报(理学版), 2020, 47(2): 172-177.
GAO Yunfeng, ZOU Guangyu. Complete moment convergence for moving average processes generated by NSD sequences. Journal of ZheJIang University(Science Edition), 2020, 47(2): 172-177.
1 JOAG-DEVK, PROSCHANF. Negative association of random variables with applications[J]. The Annals of Statistics, 1983, 11(1): 286-295.DOI:10.1214/aos/1176346079 2 ROUSSASG G. Positive and negative dependence with some statistical application[C]// Asymptotics, Nonparametrices and Time Series. New York: Marcel Dekker, 1999:757-788. 3 HUT Z. Negatively superadditive dependence of random variables with applications[J]. Chinese Journal of Applied Probability and Statisties, 2000, 16(2): 133-144. 4 CHRISTOFIDEST C, VAGGELATOUE. A connection between supermodular ordering and positive/negative association[J]. Journal of Multivariate Analysis, 2004, 88(1): 138-151.DOI:10.1016/s0047-259x(03)00064-2 5 余云彩,胡宏昌. NSD序列加权和的中心极限定理及其在EV回归模型中的应用[J]. 纯粹数学与应用数学, 2016, 32(5): 525-535. YUY C, HUH C. A CLT for weighted sums of NSD random sequences and its application in the EV regression model[J]. Pure and Applied Mathematics, 2016, 32(5): 525-535. 6 YUY C, HUH C, LIUL, et al. M-test in linear models with negatively superadditive dependent errors[J]. Journal of Inequalities and Applications, 2017,2017(1): 235. DOI:10.1186/s13660-017-1509-6 7 WANGX J, WUY, HUS H. Strong and weak consistency of LS estimators in the EV regression model with negatively superadditive-dependent errors[J]. AStA Advances in Statistical Analysis, 2018, 102(1): 41-65. DOI:10.1007/s10182-016-0286-8 8 聂彩玲,李永明,应锐. 负超可加相依样本密度函数核估计的相合性[J]. 应用数学,2018, 31(2): 457-462. DOI:10.13642/j.cnki.42-1184/o1.2018.02.018 NIEC L, LIY M, YINGR. Consistency of the kernel estimator of the density function for NSD sequence[J]. Mathematica Applicata, 2018, 31(2): 457-462. 9 黄辉,陆冬梅,胡涛. NSD序列的Chover型重对数律[J]. 吉林大学学报(理学版),2018, 56(5): 1113-1118. DOI:10.13413/j.cnki.jdxblxb.2018.05.13 HUANGH, LUD M, HUT. Chover's law of iterated logarithm for NSD sequence[J]. Journal of Jilin University( Science Edition), 2018, 56(5): 1113-1118. DOI:10.13413/j.cnki.jdxblxb.2018.05.13 10 HSU P L, ROBBINSH. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of USA, 1947, 33(2): 25-31. DOI:10.1007/978-1-4612-5110-1_29 11 WANGX J, DENGX, ZHENGL L, et al. Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J]. Statistics, 2014, 48(4): 834-850. DOI:10.1080/02331888.2013.800066 12 AMINIM, BOZORGNIAA, NADERIH, et al. On complete convergence of moving average processes for NSD sequences[J]. Siberian Advances in Mathematics, 2015, 25(1): 11-20.DOI:10.3103/s1055134415010022 13 郑璐璐,王嫱,王学军. NSD随机变量加权和的强收敛性[J]. 中国科学技术大学学报,2015, 45(2): 101-106. ZHENGL L, WANGQ, WANGX J. Strong convergence for weighted sums of negatively superadditive dependent random variables[J]. Journal of University of Science and Technology of China, 2015, 45(2): 101-106. 14 WUY, WANGX J, HUS H. Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J]. Applied Mathematics A Journal of Chinese Universities (Ser B), 2016, 31(4): 439-457. DOI:10.1007/s11766-016-3406-z 15 SHENA T, XUEM X, VOLODINA. Complete moment convergence for arrays of rowwise NSD random variables[J]. Stochastics, 2016, 88(4): 606-621. DOI:10.1080/17442508.2015.1110153 16 NADERIH, AMINIM, BOZORGNIAA. On the rate of complete convergence for weighted sums of NSD random variables and an application[J]. Applied Mathematics A Journal of Chinese Universities (Ser B), 2017, 32(3): 270-280.DOI:10.1007/s11766-017-3437-0 17 ZHENGL L,WANGX J, YANGW Z. On the strong convergence for weighted sums of negatively superadditive dependent random variables[J]. Filomat, 2017, 31(2): 295-308.DOI:10.2298/fil1702295z 18 郭明乐,朱付秀.行为NSD随机变量阵列加权和的q阶矩完全收敛性[J]. 高校应用数学学报(A辑),2017, 32(1): 55-65.DOI:10.13299/j.cnki.amjcu.001958 GUOM L, ZHUF X. Complete qth moment convergence of weighted sums for arrays of rowwise NSD random variables [J]. Applied Mathematics A Journal of Chinese Universities(Ser A),2017, 32(1): 55-65. DOI:10.13299/j.cnki.amjcu.001958 19 MENGB, WANGD C, WUQ Y. Complete convergence and complete moment convergence for arrays of rowwise negatively superadditive dependent random variables[J]. Communications in Statistics-Theory Methods, 2018, 47(16): 3910-3922.DOI:10.1080/03610926.2017.1364391 20 LID L, RAOM B, WANGX C. Complete convergence of moving average processes[J]. Statistics and Probability Letters, 1992, 14(2): 111-114. DOI:10.1016/0167-7152(92)90073-e 21 LIY X, ZHANGL X. Complete moment convergence of moving average processes under dependence assumptions [J]. Statistics and Probability Letters, 2004, 70(3): 191-197. 22 ZHOUX C. Complete moment convergence of moving average processes under φ-mixing assumptions[J]. Statistics and Probability Letters,2010, 80(5/6): 285-292. DOI:10.1016/j.spl.2009.10.018 23 SUNGS H. Complete convergence for weighted sums of random variables[J]. Statistics and Probability Letters,2007, 77(3): 303-311.DOI:10.1016/j.spl.2006.07.010