Oscillation analysis of second-order quasilinear damped dynamic equations on time scales
LI Jimeng1, YANG Jiashan2
1.School of Science, Shaoyang University, Shaoyang 422004, Hunan Province, China 2.School of Data Science and Software Engineering, Wuzhou University,Wuzhou 543002,Guangxi Zhuang Autonomous Region, China
Abstract:We investigate the oscillation of second-order quasilinear delay damped dynamic equation [a(t)|xΔ(t)|λ-1xΔ(t)]Δ+b(t)|xΔ(t)|λ-1xΔ(t)+p(t)|x(δ(t))|λ-1x(δ(t))=0, where t0 ∈ T and T is an arbitrary time scale, and the equation is in a noncanonical form, i.e., $\int^{∞}_{t_0}$[a-1(s)e-b/a(s,t0)]1/λ Δs < ∞. By using the generalized Riccati transformation, and incorporating with the time scales theory and the inequality technique, we establish some new sufficient conditions for the oscillation of the equation, these results deal with some cases not covered by existing results in the literature.
李继猛, 杨甲山. 时间尺度上二阶拟线性阻尼动力方程的振动性分析[J]. 浙江大学学报(理学版), 2020, 47(1): 72-76.
LI Jimeng, YANG Jiashan. Oscillation analysis of second-order quasilinear damped dynamic equations on time scales. Journal of ZheJIang University(Science Edition), 2020, 47(1): 72-76.
1 张全信,高丽 . 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则[J]. 中国科学(数学), 2010,40(7):673-682.DOI:10.1007/s12190-010-0426-3 ZHANG Q X , GAO L . Oscillation criteria for second-order half-linear delay dynamic equations with damping on times scales[J]. Science Sinica Mathematica, 2010, 40(7): 673-682.DOI:10.1007/s12190-010-0426-3 2 张全信,高丽,刘守华 . 时间尺度上具阻尼项的二阶半线性时滞动力方程振动性的新结果[J].中国科学(数学), 2013,43(8): 793-806.DOI:10.1360/012012-392 ZHANG Q X , GAO L , LIU S H . New oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J]. Science Sinica Mathematica, 2013, 43(8): 793-806.DOI:10.1360/012012-392 3 ERBE L , HASSAN T S , PETERSON A . Oscillation criteria for nonlinear damped dynamic equations on time scales[J]. Applied Mathematics and Computation, 2008,203(1):343-357.DOI:10.1016/j.amc.2008.04.038 4 ZHANG Q X . Oscillation of second-order half-linear delay dynamic equations with damping on time scales[J]. Journal of Computational and Applied Mathematics, 2011,235(5):1180-1188.DOI:10.1016/j.cam.2010.07.027 5 张全信,高丽,刘守华 . 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则(II)[J]. 中国科学(数学), 2011,41(10): 885-896.DOI:10.1360/012012-392 ZHANG Q X , GAO L , LIU S H . Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales(II) [J]. Science Sinica Mathematica, 2011, 41(10): 885-896.DOI:10.1360/012012-392 6 BOHNER M , PETERSON A . Dynamic Equations on Time Scales: An Introduction with Applications[M]. Boston: Birkhauser, 2001. 7 SAKER S H . Oscillation of second-order nonlinear neutral delay dynamic equations on time scales[J]. Journal of Computational and Applied Mathematics, 2006,187:123-141.DOI:10.1081/00036810601091630 8 HAN Z L , LI T X , SUN S R ,et al . Oscillation for second-order nonlinear delay dynamic equations on time scales[J]. Advances in Difference Equations, 2009:756171. DOI:10.1155/2009/756171 9 孙一冰,韩振来,孙书荣,等 . 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性[J]. 应用数学学报, 2013,36(3):480-494. SUN Y B , HAN Z L , SUN S R ,et al . Oscillation of a class of second order half-linear neutral delay dynamic equations with damping on time scales[J]. Acta Mathematicae Applicatae Sinica, 2013,36(3):480-494. 10 杨甲山 . 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性[J]. 应用数学学报, 2016,39(3):334-350. YANG J S . Oscillation for a class of second-order Emden-Fowler dynamic equations on time scales[J]. Acta Mathematicae Applicatae Sinica, 2016,39(3):334-350. 11 杨甲山,方彬 . 时间测度链上一类二阶非线性时滞阻尼动力方程的振动性分析[J]. 应用数学, 2017,30(1):16-26. DOI:10.13642/j.cnki.42-1184/o1.2017.01.003 YANG J S , FANG B . Oscillation analysis of certain second-order nonlinear delay damped dynamic equations on time scales[J]. Mathematica Applicata, 2017,30(1):16-26.DOI:10.13642/j.cnki.42-1184/o1.2017.01.003 12 杨甲山 .时间尺度上二阶Emden-Fowler型延迟动态方程的振动性[J]. 振动与冲击, 2018,37(16): 154-161. DOI:10.13465/j.cnki.jvs.2018.16.023 YANG J S . Oscillation for a class of second-order Emden-Fowler-type delay dynamic equations on time scales[J]. Journal of Vibration and Shock, 2018,37(16): 154-161.DOI:10.13465/j.cnki.jvs.2018.16.023 13 LI T X , SAKER S H .A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(12):4185-4188. DOI:10.1016/j.cnsns.2014.04.015 14 DENG X H , WANG Q R , ZHOU Z .Oscillation criteria for second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients on time scales[J]. Science China Mathematics, 2017,60(1):113-132.DOI:10.1007/s11425-016-0070-y 15 BOHNER M , LI T X . Kamenev-type criteria for nonlinear damped dynamic equations[J]. Science China Mathematics, 2015,58(7):1445-1452.DOI:10.1007/s11425-015-4974-8 16 李同兴 . 几类高阶时滞微分方程的定性分析[D]. 济南:山东大学, 2013. LI T X . Qualitative Analysis of Several Classes of Higher-Order Delay Differential Equations[D]. Jinan: Shandong University,2013. 17 张晓建 . 时间尺度上一类二阶非线性动力系统的振动性判据[J]. 浙江大学学报(理学版), 2018, 45(2): 136-142. DOI:10.3785/j.issn.1008-9497.2018.02.002 ZHANG X J . Oscillatory criteria for certain second-order nonlinear dynamic equations on time scales[J]. Journal of Zhejiang University(Science Edition), 2018,45(2):136-142.DOI:10.3785/j.issn.1008-9497.2018.02.002 18 杨甲山 . 时间模上一类二阶非线性延迟动力系统的振动性分析[J]. 应用数学学报, 2018,41(3):388-402. DOI:10.1081/00036810601091630 YANG J S . Oscillation analysis of second-order nonlinear delay dynamic equations on time scales[J]. Acta Mathematicae Applicatae Sinica, 2018,41(3): 388-402. DOI:10.1081/00036810601091630