An information fusion map matching method based on ranking learning
LU Jiapin1, LUO Yuetong1, HUANG Zhaosong2, ZHANG Yankong1, CHEN Wei2
1.School of Computer Science and Information Technology, Hefei University of Technology, Hefei 230601, China 2.College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
Abstract:Fusion of multi-source information can effectively improve the accuracy of map matching results. Existing map matching methods rely on mathematical models. When new types of data are introduced, it is necessary to design a new mathematical model or adjust the complex parameters of those model in order to obtain the best map matching results. To solve the problem, this paper proposes an end-to-end data-driven map matching method. Instead of establishing a specific mathematical model, our method uses a neural network to learn a scoring function of the candidate roads from the data with the matching results by the ranking learning method. During matching, the method first selects all the roads near the GPS point as candidate roads; then uses the scoring function to score and sort all the candidate roads; finally selects the road with highest score as the map matching result. The experimental results demonstrate that the proposed method can effectively use new types of data and adapt to data missing conditions so as to achieve improvement or avoid sharp drop in accuracy. On the other hand, with the accuracy close to the HMM-based method, and the run time close to the angle- and distances-feature-based method.
1 CHEN W , GUO F , WANG F Y . A Survey of Traffic Data Visualization[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6):2970-2984. DOI:10.1109/TITS.2015.2436897 2 AN Q , FENG Z , CHEN S , et al . A Green self-adaptive approach for online map matching[J]. IEEE Access, 2018, 6: 51456-51469.DOI:10.1109/access.2018.2869852 3 PFOSER D , JENSEN C S . Capturing the uncertainty of moving-object representations[C]// Proc Int Symposium on Advances in Spatial Databases.Berlin:Springer, 1999. DOI:10.1007/3-540-48482-5_9 4 ZHENG Y . Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2015, 6(3): 29.DOI:10.1145/2743025 5 QUDDUS M A , OCHIENG W Y , NOLAND R B . Current map-matching algorithms for transport applications: State-of-the art and future research directions[J]. Trans-portation Research Part C Emerging Technologies, 2007, 15(5):312-328.DOI:10.1016/j.trc.2007.05.002 6 SCHULZE G , HORN C , KERN R . Map-matching cell phone trajectories of low spatial and temporal accuracy[C]// IEEE International Conference on Intelligent Transportation Systems. Las Palmas:IEEE, 2015. DOI:10.1109/ITSC.2015.435 7 RACKO J , BRIDA P , PERTTULA A , et al . Pedestrian dead reckoning with particle filter for handheld smartphone[C]// International Conference on Indoor Positioning & Indoor Navigation. Alcala de Henares: IEEE, 2016. DOI:10.1109/IPIN.2016.7743608 8 H?BER S , COSTA C M , SOUSA I , et al . Map-matching algorithms for robot self-localization: a comparison between perfect match, iterative closest point and normal distributions transform[J]. Journal of Intelligent & Robotic Systems, 2018(2):1-14.DOI:10.1007/s10846-017-0765-5 9 WHITE C E , BERNSTEIN D , KORNHAUSER A L . Some map matching algorithms for personal navigation assistants[J]. Transportation Research Part C (Emerging Technologies), 2000, 8(1-6):91-108. DOI:10.1016/s0968-090x(00)00026-7 10 CHEN D , DRIEMEL A , GUIBAS L , et al . Approximate map matching with respect to the fréchet distance[C]// Work-shop on Algorithm Engineering & Experiments. San Francisco: Society for Industrial and Applied Mathematics, 2011. DOI:10.1137/1.9781611972917.8 11 SEYBOLD M P . Robust map matching for heterogeneous data via dominance decompositions[C]//Proceedings of the 2017 SIAM International Conference on Data Mining. Houston: Society for Industrial and Applied Mathematics, 2017: 813-821. DOI:10.1137/1.9781611974973.91 12 TAGUCHI S , KOIDE S , YOSHIMURA T . Online map matching with route prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2018:20(1):338-347.DOI:10.1109/TITS.2018.2812147 13 NEWSON P , KRUMM J . Hidden Markov map matching through noise and sparseness[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle:ACM, 2009: 336-343. DOI:10.1145/1653771.1653818 14 HU G , SHAO J , LIU F , et al . If-matching: Towards accurate map-matching with information fusion[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,29(1):114-127. DOI:10.1109/TKDE.2016.2617326 15 GONG Y J , CHEN E , ZHANG X , et al . AntMapper: An ant colony-based map matching approach for trajectory-based applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 390-401.DOI:10.1109/TITS.2017.2697439 16 REN M , KARIMI H A . A fuzzy logic map matching for wheelchair navigation[J]. GPS Solutions, 2012, 16(3):273-282. DOI:10.1007/s10291-011-0229-5 17 JAGADEESH G R , SRIKANTHAN T . Online map-matching of noisy and sparse location data with hidden Markov and route choice models[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2423-2434.DOI:10.1109/TITS.2017.2647967 18 JAGADEESH G R , SRIKANTHAN T . Heuristic optimizations for high-speed low-latency online map matching with probabilistic sequence models[C]//2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro: IEEE, 2016: 2565-2570. DOI:10.1109/ITSC.2016.7795968 19 TAGUCHI S , KOIDE S , YOSHIMURA T . Online map matching with route prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1): 338-347.DOI:10.1109/TITS.2018.2812147 20 ZHENG K , ZHENG Y , XIE X , et al . Reducing uncertainty of low-sampling-rate trajectories[C]//2012 IEEE 28th International Conference on Data Engineering. Washington: IEEE, 2012: 1144-1155. DOI:10.1109/icde.2012.42 21 GOH C Y, DAUWELS J , MITROVIC N , et al . Online map-matching based on hidden markov model for real-time traffic sensing applications[C]//2012 15th International IEEE Conference on Intelligent Transportation Systems. Anchorage: IEEE, 2012: 776-781. DOI:10.1109/ITSC.2012.6338627 22 LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521(7553):436. 23 LI P , WU Q , BURGES C J . Mcrank: Learning to rank using multiple classification and gradient boosting[C]//Advances in Neural Information Processing Systems. Vancouver:NIPS, 2008: 897-904. DOI:http://dx.doi.org/ 24 BURGES C , SHAKED T , RENSHAW E , et al . Learning to rank using gradient descent[C]//Proceedings of the 22nd International Conference on Machine Learning (ICML-05). Bonn:IMLS,2005: 89-96. DOI:10.1145/1102351.1102363 25 CAO Z , QIN T , LIU T Y , et al . Learning to rank: From pairwise approach to listwise approach[C]//Proceedings of the 24th International Conference on Machine Learning. Corvallis:IMLS, 2007: 129-136. DOI:10.1145/1273496.1273513 26 CAKIR F , HE K , XIA X , et al . Deep metric learning to rank[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019: 1861-1870. 27 ROBUSTO C C . The cosine-haversine formula[J]. The American Mathematical Monthly, 1957, 64(1): 38-40. DOI:10.2307/2309088 28 HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016: 770-778. DOI:10.1109/CVPR.2016.90 29 ULYANOV D , VEDALDI A , LEMPITSKY V . Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017: 6924-6932. DOI:10.1109/CVPR.2017.437 30 GLOROT X , BORDES A , BENGIO Y . Deep sparse rectifier neural networks[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS). Fort Lauderdale: AISTATS,2011:315-323. 31 IOFFE S , SZEGEDY C .Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on International Conference on Machine Learning. Lille:IMLS,2015:448-456. 32 KUBI?KA M , CELA A , MOULIN P , et al . Dataset for testing and training of map-matching algorithms[C]//2015 IEEE Intelligent Vehicles Symposium (IV). Seoul:IEEE, 2015: 1088-1093. DOI:10.1109/IVS.2015.7225829 33 ZEILER M D . Adadelta: An adaptive learning rate Method[J]. CORR,2012,abs/ 1212.5701(1):1-6.