Sufficient conditions of oscillation for certain second-order functional dynamic equations on time scales
LI Jimeng1, YANG Jiashan2
1.School of Science, Shaoyang University, Shaoyang 422004, Hunan Province, China 2.School of Data Science and Software Engineering, Wuzhou University, Wuzhou 543002, Guangxi Zhuang Autonomous Region, China
摘要研究了一类时间模上二阶Emden-Fowler 型变时滞的中立型泛函动态方程{ a ( t ) φ( [ x ( t )+p ( t ) g ( x ( τ ( t ) ) ) ]Δ ) }Δ + q1 ( t ) f1 ( φ1 ( x ( δ1 ( t ) ) ) )+ q2 ( t ) f2 ( φ2 ( x ( δ2 ( t ) ) ) )= 0 的振荡性, 其中,φ( u )= |u|α - 1 u(α>0),φ1 ( u )= |u|β - 1 u(β>0),φ2 ( u )= |u|γ - 1 u(γ>0)。利用时间模上的有关理论和广义黎卡提变换技术, 并借助各种不等式, 得到了该方程振荡的一些新的充分条件, 推广并丰富了一些已有结果。最后,给出了一些有趣的实例以说明文中的结果。
Abstract:This paper is concerned with oscillatory behavior of the following second-order Emden-Fowler variable delay neutral functional dynamic equation { a ( t ) φ( [ x ( t )+ p ( t ) g ( x ( τ ( t ) ) ) ]Δ ) }Δ + q1 ( t ) f1 ( φ1 ( x ( δ1 ( t ) ) ) )+q2 ( t ) f2 ( φ2 ( x ( δ2 ( t ) ) ) )= 0 on a time scale T, where φ( u )= |u|α - 1 u(α >0), φ1 ( u )= |u|β - 1 u(β >0) and φ2 ( u )=|u|γ - 1 u(γ >0). By using the time scales theory and the Riccati transformation as well as the inequality technique, we establish some new sufficient conditions of oscillation for the equation. Our results deal with some cases not covered by the existing results in the literature. Finally, some interesting examples are given to illustrate the versatility of our results.
李继猛, 杨甲山. 时间模上一类二阶泛函动态方程振荡的充分条件[J]. 浙江大学学报(理学版), 2019, 46(4): 405-411.
LI Jimeng, YANG Jiashan. Sufficient conditions of oscillation for certain second-order functional dynamic equations on time scales. Journal of ZheJIang University(Science Edition), 2019, 46(4): 405-411.
1 BOHNERM, PETERSONA. Dynamic Equations on Time Scales-An Introduction with Applications[M]. Boston: Birkh?user Basel, 2001. 2 AGARWALR P, BOHNERM, LIW T. Nonoscillation and Oscillation: Theory for Functional Differential Equations[M]. New York: Monographs and Textbooks in Pure and Applied Mathematics,2004. 3 AGARWALR P, O’REGAND, SAKERS H. Philos-type oscillation criteria for second-order half linear dynamic equations[J]. The Rocky Mountain Journal of Mathematics, 2007, 37(4): 1085-1104. 4 GRACES R, BOHNERM, AGARWALR P. On the oscillation of second-order half-linear dynamic equations[J]. Journal of Difference Equations and Applications, 2009, 15(5): 451-460. 5 SAKERS H. Oscillation criteria of second order half-linear dynamic equations on time scales[J]. Journal of Computational and Applied Mathematics, 2005, 177(2): 375-387. 6 HANZ L, LIT X, SUNS R, et al. Oscillation criteria of second order half-linear dynamic equations on time scales[J]. The Glob Journal of Science Frontier Research, 2010, 10: 46-51. 7 HASSANT S. Oscillation criteria for half-linear dynamic equations on time scales[J]. Journal of Mathematical Analysis and Applications, 2008, 345(1): 176-185. 8 SAKERS H, GRACES R. Oscillation criteria for quasi-linear functional dynamic equations on time scales[J]. Mathematica Slovaca, 2012, 62(3): 501-524. 9 GüVENILIRA F, NIZIGIYIMANAF. Oscillation criteria for second-order quasi-linear delay dynamic equations on time scales[J]. Advances in Difference Equations, 2014, 2014: 45. 10 YANGJ S. Advances of oscillation of dynamic equations on time scales[J]. Journal of Anhui University (Natural Science Edition), 2018, 42(1): 26-37. 11 HANZ L, SUNS R, ZHANGC H. Oscillation of second-order neutral delay dynamic equations on time scales[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(5): 21-24. 12 YANGJ S, FANGB. Oscillation analysis of certain second-order nonlinear delay damped dynamic equations on time scales[J]. Mathematica Applicata, 2017,30(1):16-26. 13 YANGJ S. Oscillation for a class of second-order Emden-Fowler-type delay dynamic equations on time scales[J]. Journal of Vibration and Shock, 2018, 37(16): 154-161. 14 YANGJ S, LIT X. Oscillation for a class of second-order damped Emden-Fowler dynamic equations on time scales[J]. Acta Mathematica Scientia, 2018, 38A(1): 134-155. 15 ZHANGQ X, GAOL. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J]. Scientia Sinica Mathematica, 2010, 40(7): 673-682. 16 ZHANGQ X, GAOL, LIUS H. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J]. Scientia Sinica Mathematica, 2011, 41(10): 885-896.