Oscillation criteria for a class of the third order nonlinear dynamic equations with distributed delays
Yuanxian HUI1,2, Peiluan LI3, Lihua DAI2
1.School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006,China 2.School of Mathematics and Statistics, Puer University, Puer 665000, Yunnan Province, China 3.School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
Abstract:In the paper, oscillatory behaviors for a class of the third order nonlinear dynamic equations with distributed delays are studied. Using methods such as generalized Riccati transformation and Integral averaging technique, some new sufficient criteria are established that any solution of the equations will be either oscillatory or convergent to zero . The results extend the respective studies in recent literature, and give a number of examples to prove the efficiency.
惠远先, 李培峦, 戴丽华. 一类三阶非线性分布时滞动力方程的振动结果[J]. 浙江大学学报(理学版), 2019, 46(3): 315-322.
Yuanxian HUI, Peiluan LI, Lihua DAI. Oscillation criteria for a class of the third order nonlinear dynamic equations with distributed delays. Journal of ZheJIang University(Science Edition), 2019, 46(3): 315-322.
1 PHILOSC G. On a Kamenev’s integral criterion for oscillation of linear differential equations of second order[J]. Annals Polonais Mathematics,1983, 21:175-194. 2 PHILOSC G.Oscillation theorems for linear differential equations of second order[J]. Archiv Der Mathematik,1989, 53(5):482-492.doi:10.1007/bf01324723 3 SUNY G, MENGF W. Note on the paper of Dzurina and Stavroulakis[J]. Applied Mathematics and Computation, 2006, 174(2):1634-1641.doi:10.1016/j.amc.2005.07.008 4 BACULíKOVáB,LIT X, D?URINAJ.Oscillation theorems for second-order superlinear neutral differential equations [J]. Mathematica Slovaca, 2013, 63(1):123-134.doi:10.2478/s12175-012-0087-9 5 LIUH D, FANW M, LIUP C.Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation[J]. Applied Mathematics and Computation, 2012, 219(5):2739-2748. 6 AGARWALR P, BOHNERM, LIT X, et al.Oscillation of second-order Emden-Fowler neutral delay differential equations[J]. Annali di Matematica Pura ed Applicata, 2014,193(6):1861–1875.doi:10.1007/s10231-013-0361-7 7 WUY Z,YUY H, ZHANGJ M, et al.Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type[J]. Journal of Inequalities and Applications, 2016, 2016(1):328-338.doi:10.1186/s13660-016-1268-9 8 HUANGJ Z, FUC H. Oscillation criteria of generalized Emden-Fowler equations[J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1126-1135. 9 YANGJ S, QING J. Kamenev-type oscillation criteria for certain second-order differential equations[J]. Journal of Zhejiang University(Science Edition), 2017, 44(3):274-280. 10 BACULíKOVáB, D?URINAJ.Oscillation of third-order neutral differential equations[J]. Mathematical and Computer Modelling, 2010, 52(1):215-226.doi:10.1016/j.mcm.2010.02.011 11 THANDAPANIE, LIT X.On the oscillation of third-order quasi-linear neutral functional differential equations[J]. Archivum Mathematicum, 2011, 47 (3) :181-199. 12 LIT X, ZHANGC H.Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient[J]. Advances in Difference Equations, 2013 , 2013(1):1-8.doi:10.1186/1687-1847-2013-333 13 JIANGY, LIT X.Asymptotic behavior of a third-order nonlinear neutral delay differential equation[J]. Journal of Inequalities and Applications, 2014, 2014(1):512.doi:10.1186/1029-242x-2014-512 14 YANGL L, XUZ T. Oscillation of certain third-order quasilinear neutral differential equation[J]. Mathematica Slovaca, 2014, 64(1):85-100.doi:10.2478/s12175-013-0189-z 15 JIANGY, JIANGC M, LIT X. Oscillatory behavior of third-order nonlinear neutral delay differential equations[J]. Advances in Difference Equations, 2016 , 2016(1):171.doi:10.1186/s13662-016-0902-7 16 YANGX J. Oscillation criterion for a class of quasilinear differential equations[J]. Applied Mathematics and Computation, 2004, 153(1):225-229.doi:10.1016/s0096-3003(03)00626-x