Multi-scale analysis of spatial-temporal characteristics of infectious diseases: A case study on gonorrhea, bacillary dysentery and mumps in Hangzhou
ZHENG Jiali1,2, ZHANG Feng1,2, DU Zhenhong1,2, LAI Lifang3, LIU Renyi1,2, LIU Yao1,2
1. Zhejiang Provincial Key Lab of GIS, Zhejiang University, Hangzhou 310028, China;
2. Department of Geographic Information Science, Zhejiang University, Hangzhou 310027, China;
3. Department of Urban Construction Engineering, Zhejiang College of Construction, Hangzhou 311231, China
Abstract:Spatial-temporal analysis on infectious diseases is crucial for the prevention and control of infectious diseases. However, existing related studies are still in an early exploratory stage and few of them consider the multiple temporal scales. To solve the problem, this paper proposes a multi-scale spatial-temporal analytical framework for systematically analyzing the spatial-temporal distribution patterns of infectious diseases at multiple temporal scales (year, season and month), by integrating the models of self-organizing map, kernel density estimation and space-time scan statistic. This framework is applied to analyze the data about gonorrhea, bacillary dysentery and mumps collected in Hangzhou from 2006 to 2013. The results show that the incidences of the three types of infectious diseases exhibit remarkable inter-annual variations and decrease gradually during the time period in the districts with high population density, but remain stable at a low level in the sparsely populated areas. Evidently, different types of diseases present spatial-temporal aggregation and most of cases are concentrated in main urban districts of Hangzhou for different seasons. There is no remarkable seasonal variation regarding the density of gonorrhea. Bacillary dysentery shows a relatively higher density in summer and autumn but a lower occurrence rate in winter and spring. The seasonal distribution characteristics of mumps are contrary to those of bacillary dysentery. The spatial-temporal clusters of gonorrhea incidence are scattered, whereas those of bacillary dysentery and mumps mainly occur during June to November and December to May, respectively. This paper systematically analyzes the spatial-temporal patterns of infectious diseases from macro-to micro-level. The conclusion drawn from this research will provide more scientific and sound references for effective prevention and control of infectious diseases and optimal allocation of resources. Furthermore, the proposed spatial-temporal data analytical framework will provide a new perspective for exploration of spatial-temporal characteristics of infectious diseases.
郑嘉丽, 张丰, 杜震洪, 来丽芳, 刘仁义, 刘尧. 传染病的多尺度时空特征分析——以杭州市淋病、细菌性痢疾和流行性腮腺炎为例[J]. 浙江大学学报(理学版), 2018, 45(5): 605-616.
ZHENG Jiali, ZHANG Feng, DU Zhenhong, LAI Lifang, LIU Renyi, LIU Yao. Multi-scale analysis of spatial-temporal characteristics of infectious diseases: A case study on gonorrhea, bacillary dysentery and mumps in Hangzhou. Journal of ZheJIang University(Science Edition), 2018, 45(5): 605-616.
[1] 宋捷.大气污染和气象因素对传染病的交互影响[D].兰州:兰州大学, 2015. SONG J.The Interaction Effects of Air Pollution and Meteorological Factors on the Infectious Diseases[D]. Lanzhou:Lanzhou University, 2015.
[2] 徐冰.基于贝叶斯网络的传染病时空预警模型研究[D].西安:长安大学, 2015. XU B.A Study on the Spatial-Time Early Warning Models of Infectious Disease Based on Bayesian Network[D].Xi'an:Chang'an University, 2015.
[3] 徐聪.基于GIS的小空间尺度传染病时空预警技术[D].杭州:浙江大学, 2014. XU C.GIS-based Technologies on Spatio-temporal Early-Warning of Infectious Diseases in Small-Scale Space[D]. Hangzhou:Zhejiang University, 2014.
[4] 张旭,霍爱梅,姚晓丽,等.空间分析技术在研究传染病时空传播规律中的应用[J].测绘与空间地理信息, 2015, 38(7):79-81. ZHANG X, HUO A M, YAO X L, et al. Application of spatial analysis techniques in the temporal spread pattern study of infections diseases[J]. Geomatics & Spatial Information Technology, 2015, 38(7):79-81.
[5] 查文婷,刘意,郑剑,等.湖南省2004-2013年细菌性痢疾时空格局GIS技术分析[J].中国公共卫生, 2015, 31(10):1297-1300. ZHA W T, LIU Y, ZHENG J, et al. Spatio-temporal distribution of bacterial dysentery from 2004 to 2013 Hunan province:Analysis with geographic information system[J]. Chinese Journal of Public Health, 2015, 31(10):1297-1300.
[6] COULIBALY D, REBAUDET S, TRAVASSOS M, et al. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali[J]. Malaria Journal, 2013, 12(1):82.
[7] 陈江平,张兰兰,余远剑,等.利用空间自相关的中国内陆甲型H1N1流感疫情分析[J].武汉大学学报(信息科学版), 2011, 36(11):1363-1366. CHEN J P, ZHANG L L, YU Y J, et al. Analysis on epidemic of A/H1N1 Flu in mainland China based on spatial statistical methods[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11):1363-1366.
[8] 李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究, 2005, 24(1):11-18. LI S C, CAI Y L. Some scaling issues of geography[J]. Geographical Research, 2005, 24(1):11-18.
[9] 刘海猛,石培基,潘竟虎,等.中国城镇房价收入比时空演变的多尺度分析[J].地理科学, 2015, 35(10):1280-1287. LIU H M, SHI P J, PAN J H, et al. Spatio-temporal evolution on housing price to income ratio of China using multiscale analysis[J]. Scientia Geographica Sinica, 2015, 35(10):1280-1287.
[10] ZHANG L, WILSON D P. Trends in notifiable infectious diseases in China:Implications for surveillance and population health policy[J]. Plos One, 2012, 7(2):e31076.
[11] MARTÍPASTOR M, OLALLA P G D, BARBERÁM J, et al. Epidemiology of infections by HIV, syphilis, gonorrhea and lymphogranuloma venereum in Barcelona city:A population-based incidence study[J]. Bmc Public Health, 2015, 15(1):1015.
[12] GAO H, LUAN W, WANG M, et al. Epidemic characteristics of main infectious diseases in Yantai city between 2010 and 2012 and prevention strategy research[J]. Pakistan Journal of Pharmaceutical Sciences, 2016, 29(6):2191-2198.
[13] 冯霞燕.Y市2005-2015年报告传染病流行特征分析[D].杭州:浙江大学, 2016. FENG X Y. Epidemiologic Characteristics of Reported Infectious Diseases in Y City from 2005 to 2015[D]. Hangzhou:Zhejiang University, 2016.
[14] RODRÍUEZ E M, DÍAZ F, P ÉREZ M V. Spatio-temporal clustering of American Cutaneous Leishmaniasis in a rural municipality of Venezuela[J]. Epidemics, 2013, 5(1):11-19.
[15] 赵晓辉,周大宇,孙佩龙,等.2010-2014年锦州市流感监测及时空分布特征分析[J].现代预防医学, 2015,42(11):2062-2064. ZHAO X H, ZHOU D Y, SUN P L, et al. Analysis of influenza surveillance and its spatio-temporal characteristics in Jinzhou from 2010 to 2014[J]. Modern Preventive Medicine, 2015, 42(11):2062-2064.
[16] GREENE S K, PETERSONE R, KAPEL D, et al. Daily reportable disease spatiotemporal cluster detection, New York city, New York, USA, 2014-2015[J].Emerging Infectious Diseases, 2016, 22(10):1808-1812.
[17] MUKHSAR, ABAPIHI B, SANI A, et al. Extended convolution model to bayesian spatio-temporal for diagnosing the DHF endemic locations[J]. Journal of Interdisciplinary Mathematics, 2016, 19(2):233-244.
[18] 吴北平,杨典,王劲峰,等.利用贝叶斯时空模型分析山东省手足口病时空变化及影响因素[J].地球信息科学学报, 2016,18(12):1645-1652. WU B P, YANG D, WANG J F, et al. Space-time variability and determinants of hand, foot and mouth in Shandong province:A bayesian spatio-temporal modeling approach[J]. Journal of Geo-Information Science, 2016, 18(12):1645-1652.
[19] GUI J, LIU Z, ZHANG T, et al. Epidemiological characteristics and spatial-temporal clusters of hand, foot, and mouth disease in Zhejiang province, China, 2008-2012[J].Plos One, 2015, 10(9):e0139109.
[20] 李美芳,欧金沛,黎夏.基于地理信息系统的2009-2013年甲型H1N1流感的时空分析[J].地理研究, 2016,35(11):2139-2152. LI M F, OU J P, LI X. Spatio-temporal analysis of influenza A(H1N1) in China during 2009 to 2013 based on GIS[J]. Geographical Research, 2016,35(11):2139-2152.
[21] KULLDROFF M, HEFFERNAN R, HARTMAN J, et al. A space-time permutation scan statistic for disease outbreak detection[J].Plos Medicine, 2005, 2(3):e59.
[22] 殷菲,冯子健,李晓松,等.基于前瞻性时空重排扫描统计量的传染病早期预警系统[J].卫生研究, 2007,36(4):455-458. YIN F, FENG Z J, LI X S, et al. The early warning system based on the prospective space-time permutation statistic[J].Journal of Hygiene Research, 2007, 36(4):455-458.
[23] 王培安,罗卫华,白永平.基于空间自相关和时空扫描统计量的聚集比较分析[J].人文地理, 2012,27(2):119-127. WANG P A, LUO W H, BAI Y P. Comparative analysis of aggregation detection based on spatial autocorrelation and spatial temporal scan statistics[J]. Human Geography, 2012, 27(2):119-127.
[24] 殷菲.时-空扫描统计量在传染病早期预警中的应用研究[D].成都:四川大学, 2007. YIN F.A Study on the Applicability of Space-time Scan Statistic in Early Warning of Infectious Disease[D]. Chengdu:Sichuan University, 2007.
[25] 张学工.模式识别[M].第3版.北京:清华大学出版社,2010. ZHANG X G.Pattern Recognition[M]. 3rd. Beijing:Tsinghua University Press, 2010.
[26] 徐步云,倪禾.自组织神经网络和K-means聚类算法的比较分析[J].新型工业化, 2014,4(7):63-69. XU B Y, NI H. Comparative analysis of SOM and K-means clustering[J].Journal of New Industrialization, 2014, 4(7):63-69.
[27] KOHONEN T. Self-Organizing Maps 3rd Edition[M]. Berlin:Springer-Verlag, 2001, 8174:153-160.
[28] ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3):832-837.
[29] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3):1065-1076.
[30] EPANECHNIKOV V A. Non-parametric estimation of a multivariate probability density[J]. Theory of Probability & Its Applications, 1969, 14(1):153-158.
[31] SILVERMAN B W. The kernel method for multivariate data[J]. Density Estimation for Statistics and Data Analysis, 1986(4):76-86.
[32] GAO S. Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile age[J]. Spatial Cognition & Computation, 2015, 15(2):86-114.
[33] KULLDORFF M, ATHAS W F, FEURER E J, et al. Evaluating cluster alarms:A space-time scan statistic and brain cancer in Los Alamos, New Mexico[J]. American Journal of Public Health, 1998, 88(9):1377.
[34] KULLDORFF M. SaTScanTM User Guide for Version 9.4[EB/OL].[2017-11-30]. https://www.satscan.org/.
[35] 马越,李晓松,张彦利.扫描统计量在传染病监测应用中的空间尺度选择[J].现代预防医学, 2011,38(9):1601-1604. MA Y, LI X S, ZHANG Y L. Spatial scale selection of space-time statistic method analysis on the application in surveillance for infectious diseases[J]. Modern Preventive Medicine, 2011, 38(9):1601-1604.
[36] 杭州市人民政府地方志办公室.杭州年鉴(2014)[M].北京:方志出版社,2014:346. The Local Records Office of Hangzhou Municipal People's Government. Hangzhou Almanac(2014)[M]. Beijing:Local Records Press, 2014:346.
[37] 张国庆.1990-2012年寿光市法定传染病流行趋势分析[D].济南:山东大学, 2013. ZHANG G Q. Analysis of Epidemic Situation and Trend of Notifiable Infectious Diseases in Shouguang City from 1990 to 2012[D]. Jinan:Shandong University, 2013.
[38] 李媛媛,徐成东,肖革新,等.京津唐地区细菌性痢疾社会经济影响时空分析[J].地球信息科学学报,2016, 18(12):1615-1623. LI Y Y, XU C D, XIAO G X, et al. Spatial-temporal analysis of social-economic factors of bacillary dysentery in Beijing-Tianjin-Tangshan, China[J]. Journal of Geo-Information Science, 2016, 18(12):1615-1623.
[39] RAHMANIATI M, ERYANDO T, SUSANNA D, et al. The utilization of standard deviational ellipse (SDE) model for the analysis of dengue fever cases in Banjar city 2013[J]. Aspirator Journal of Vector Borne Diseases Studies, 2014, 6(1):21-28.
[40] GUO D, CHEN J, MACEACHREN A M, et al. A visualization system for space-time and multivariate patterns (VIS-STAMP)[J]. IEEE Transactions on Visualization & Computer Graphics, 2006, 12(6):1461-1474.
[41] LI R, CHENG S, LUO C, et al. Epidemiological characteristics and spatial-temporal clusters of mumps in Shandong province, China from 2005 to 2014[J]. Scientific Reports, 2017(7):46328.
[42] NAKAYA T, YANO K. Visualizing crime clusters in a space-time cube:An exploratory data-analysis approach using space-time kernel density estimation and scan statistics[J]. Transactions in GIS, 2010, 14(3):223-239.