Testing the QNSE scheme with the modified coefficients of turbulent mixing length scale: Three summer and autumn coastal gale cases study in China
CHEN Youli1,2, XU Huiyan2, LU Mei3, ZHU Ye3, LIU Rui2
1. Ningbo Weather Bureau, Ningbo 315012, Zhejiang Province, China;
2. Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China;
3. Zhejiang Marine Monitoring and Forecasting Center, Hangzhou 310007, China
Abstract:Accurate description of physical processes in the planetary boundary layer (PBL) is important for coastal gale simulations. In this study, the Yonsei University (YSU), Quasi-Normal Scale Elimination scheme (QNSE), and a modified QNSE planetary boundary layer scheme with adjusted coefficients of turbulent mixing length scale are used to simulate three coastal wind cases, namely Meiyu in July, 2009, typhoon Soudelor (2015), and the coastal gale in October 2013. Results on Meiyu case show that the modified QNSE scheme improves the coastal winds simulations by producing time series of surface winds more close to the observations. The statistical results for 490 sample stations in ten islands for the typhoon Soudelor (2015) case show that the modified QNSE scheme produces the smallest absolute bias and relative bias compared to the QNSE and YSU schemes. The simulations of the coastal gale in October 2013 show that the modified QNSE scheme presents a reduction in the overestimated winds than the QNSE scheme.
陈有利, 徐慧燕, 卢美, 朱业, 刘瑞. 用调整边界层湍流系数的QNSE方案模拟夏秋季沿海大风的应用研究[J]. 浙江大学学报(理学版), 2018, 45(3): 343-350,362.
CHEN Youli, XU Huiyan, LU Mei, ZHU Ye, LIU Rui. Testing the QNSE scheme with the modified coefficients of turbulent mixing length scale: Three summer and autumn coastal gale cases study in China. Journal of ZheJIang University(Science Edition), 2018, 45(3): 343-350,362.
[1] STULL R B. An Introduction to Boundary Layer Meteorology[M]. Beijing:China Meteorological Press, 1991:738.
[2] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9):2318-2341.
[3] JANJIC' Z I. Nonsingular implementation of Mellor-Yamada level 2.5 scheme in the NCEP MESO model[R]. NCEP Office Note No. 437, 2002.
[4] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I:Model description and testing[J]. Journal of Applied Meteorology & Climatology, 2007, 46(9):1383-1395.
[5] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part Ⅱ:Application and evaluation in a mesoscale meteorological model[J]. Journal of Applied Meteorology & Climatology, 2007, 46(9):1396-1409.
[6] SUKORIANSKY S. Implementation of quasi-normal scale elimination model of stably stratified turbulence in WRF[R]. Report on WRF-DTC Visit of Semion Sukoriansky-June,2008.
[7] SUKORIANSKY S, GALPERIN B. A quasi-normal scale elimination (QNSE) theory of turbulent flows with stable stratification and its application in weather forecast systems[C]//6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (THE'08). Rhodes:IASME/WSEAS, 2008:376-380.
[8] NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound-Layer Meteor, 2003, 107(2):401-427.
[9] NAKANISHI M, NⅡNO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. J Meteor Soc Japan, 2009, 87(5):895-912.
[10] NAKANISHI M. Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data[J]. Bound-Layer Meteor, 2001, 99(3):349-378.
[11] BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a meso beta-scale model[J]. Mon Wea Rev, 1989, 117(8):1872-1890.
[12] NIELSEN-GAMMON J W, HU X M, ZHANG F Q, et al. Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation[J]. Mon Wea Rev, 2010, 138(9):3400-3417.
[13] PAGOWSKI M. Nakanishi and Niino improved Mellor-Yamada 1.5 and 2-order closures (2004, 2006) implementation in WRF & 1D WRF PBL model as a tool for development and testing[R]//WRF Users' Workshop, PBL Group Meeting. Boulder, CO, USA. doi:10.1007/s10546-010-9502-3. 2008.
[14] SUŠELJ K, SOOD A. Improving the Mellor-Yamada-Janjic' parameterization for wind conditions in the marine planetary boundary layer[J]. Bound-Layer Meteor, 2010, 136(2):301-324,
[15] 徐慧燕, 朱业, 刘瑞, 等. 长江下游地区不同边界层参数化方案的试验研究[J]. 大气科学, 2013, 37(1):149-159. XU H Y, ZHU Y, LIU R, et al. Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1):149-159.
[16] XU H Y, ZHAI G Q, WANG D H, et al. An evaluation of the Mellor-Yamada-Janjic' formulation parameters for the QNSE scheme in the WRF model over the lower Yangtze River valley[J]. Terr Atmos Ocean Sci, 2015, 26(3):283-299.
[17] 徐慧燕,徐亚钦,王智,等.WRF模式中QNSE方案的湍流长度尺度系数的调整试验研究[J]. 大气科学, 2017, 41(2):1-15. XU H Y, XU Y Q, WANG Z, et al. Modification tests for the coefficient of turbulent mixing length scale in QNSE scheme in the WRF model[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(2):1-15.