Abstract:Noticing the shortcomings of Wolf Pack Algorithm(WPA), such as too many parameters, predetermined step length and fixed scouting direction, a wolf pack algorithm based on adaptive step length and regulable scouting direction, named Modified Adaptive and Changed Scouting Direction Wolf Pack Algorithm(MACWPA) is proposed. It makes modifications on the step length of the three major processes, namely scouting behavior, summoning behavior and beleaguering behavior, and adopts tentative direction of scouting behavior, providing wolf pack more artificial intelligence. Each wolf is able to adjust its step length as well as scouting direction according to the leader wolf's position, which simplifies parameter set up, accelerates the convergence speed and improves the optimization precision. Simulation results show that the optimization precision for low dimensional unimodal function is greatly improved by MACWPA compared with WPA. It also improves the optimization precision of high dimensional multimodal function.
[1] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agent[J].IEEE Trans, on Systems, Man, and Cybernetics, 1996, 26(1):29-41.
[2] 李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. LI X L, SHAO Z J, QIAN J X. An optimizing method based on autonomous animals:Fish-swarm algorithm[J].Systems Engineering Theory and Practice, 2002, 22(11):32-38.
[3] KRISHNAND K N, GHOSE D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions[J].Swarm Intelligence, 2009, 3(2):87-124.
[4] LIU C, YAN X, LIU C, et al. The wolf colony algorithm and its application[J]. Chinese Journal of Electronics, 2011, 20(2):212-216.
[5] 吴虎胜,张凤鸣,吴庐山.一种新的群体智能算法——狼群算法[J].系统工程与电子技术,2013,35(11):2430-2438. WU H S, ZHANG F M, WU L S. New swarm intelligence algorithm:Wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11):2430-2438.
[6] 陈斐.改进的人工鱼群算法分析与研究[D].西安:西安电子科技大学,2012. CHEN F. Analysis and Research on Improved Artificial Fish Swarm Algorithm[D]. Xi'an:Xidian University, 2012.
[7] 刘彦君,江铭炎.自适应视野和步长的改进人工鱼群算法[J].计算机工程与应用,2009,45(25):35-37. LIU Y J, JIANG M Y. Improved artificial fish swarm algorithm based on adaptive visual and step length[J]. Computer Engineering and Applications, 2009, 45(25):35-37.
[8] 欧阳喆,周永权.自适应步长萤火虫优化算法[J].计算机应用,2011,31(7):1804-1807. OUYANG Z, ZHOU Y Q. Self-adaptive step glowworm swarm optimization algorithm[J]. Journal of Computer Applications, 2011, 31(7):1804-1807.
[9] 李开荣,陈宏建,陈崚.一种动态自适应蚁群算法[J].计算机工程与应用,2004,40(29):149-152. LI K R, CHEN H J, CHEN L. A dynamic and adaptive ant algorithm[J]. Computer Engineering and Applications, 2004, 40(29):149-152.
[10] 李国亮,魏振华,徐蕾.基于改进搜索策略的狼群算法[J].计算机应用,2015,35(6):1633-1636,1687. LI G L, WEI Z H, XU L. Wolf pack algorithm based on modified search strategy[J]. Journal of Computer Applications, 2015, 35(6):1633-1636, 1687.
[11] 周强,周永权.一种基于领导者策略的狼群搜索算法[J].计算机应用研究,2013,30(9):2629-2632. ZHOU Q, ZHOU Y Q. Wolf colony search algorithm based on leader strategy[J].Application Research of Computers, 2013, 30(9):2629-2632.
[12] 薛俊杰,王瑛,李浩,等.一种狼群智能算法及收敛性分析[J].控制与决策,2016,31(12):2131-2139. XUE J J, WANG Y, LI H, et al. A smart wolf pack algorithm and its convergence analysis[J]. Control and Decision, 2016,31(12):2131-2139.
[13] WU H, ZHANG F. A uncultivated wolf pack algorithm for high dimensional functions and its application in parameters optimization of PID controller[C]//IEEE Congress on Evolutionary Computation. Beijing:IEEE Press, 2014:2430-2438.
[14] 吴虎胜.狼群算法及其应用研究[D].西安:空军工程大学,2014. WU H S. Wolf Pack Algorithm and Its Application Research[D]. Xi'an:Air Force Engineering University, 2014.
[15] GUO L T, LIU S Y.An improved binary wolf pack algorithm based on adaptive step length and improved update strategy for 0-1 Knapsack problems[C]//Data Science:Third International Conference of Pioneering Computer Scientists, Engineers and Educators. Changsha:ICPCSEE, 2017:442-452. DOI:10.1007/978-981-10-6388-6-37.