Chiral transition mechanism and water solvation effect of stable configurations of histidine molecules
WANG Zuocheng1, LI Chenjie2, DONG Lirong3, YAN Hongyan4, TONG Hua1
1. College of Physics, Baicheng Normal College, Baicheng 137000, Jilin Province, China;
2. College of Media, Baicheng Normal College, Baicheng 137000, Jilin Province, China;
3. College of Physics, Jilin Normal University, Siping 136000, Jilin Province, China;
4. Computer Science College, Baicheng Normal College, Baicheng 137000, Jilin Province, China
Abstract:The chiral transition mechanism and water solvation effect of three kinds of the most stable configurations of histidine molecules were studied by adopting the B3LYP method of density functional theory, the MP2 method of perturbation theory, and smd model method of self consistent reaction field theory. Our study on reaction channels shows that there are three channels a, b and c for the title reaction. For the configuration one and two, the proton of the chiral carbon is transferred directly with amino group as the bridge in the channel a, and in b hydroxyl isomerism firstly, then the proton is transferred with amino group as the bridge, while in c it is transferred with carbonyl/amino groups as the bridge. For the configuration three, the proton is transferred with the following respective groups as the bridge for channels a, b and c:only amino group, carbonyl then amino group, carboxyl then amino group. Calculations of potential energy surface show that channel b is the dominant reaction path in the configuration one and two, step-determining gibbs free energy barriers are 250.8 kJ·mol-1 and 251.7 kJ·mol-1, respectively, which are generated by the transition state of proton transfering from the chiral carbon to the amino N after hydroxyl isomerism. In addition, channel a is the dominant reaction path in the configuration three, and step-determining gibbs free energy barrier is 250.8 kJ·mol-1 that is generated by the transition state of proton transfer from the chiral carbon to the amino N. The water solvation effect reduces the step-determining energy barrier to 109.1 kJ·mol-1 for the dominant reaction path in the configuration one. It shows that water environment has an excellent catalytic effect on the histidine optical isomerization.
[1] 蒋立锐.组氨酸在代谢中的作用[J].生理科学进展,1985,16(2):174-176. JIANG L R. The role of histidine in metabolism[J]. Progress in Physiological Science,1985,16(2):174-176.
[2] 叶林奇.组氨酸在蛋白质结构功能中的作用[J].涪陵师专学报,2000,16(4):74-76. YE L Q. The role of histidine in protein structure function[J]. Journal of Fuling Teachers College,2000,16(4):74-76.
[3] 胡琼,王国营,欧家鸣,等.组氨酸四种质子化结构振动光谱特性的密度泛函理论计算研究[J].红外,2010,31(2):19-24. HU Q, WANG G Y, OU J M, et al. Calculation of vibrational spectral properties of four protonation forms of histidine using density functional theory[J]. Infrared,2010,31(2):19-24.
[4] 王卫宁,李元波,岳伟.组氨酸和精氨酸的太赫兹光谱研究[J].物理学报,2007,56(2):781-785. WANG W N, LI Y B, YUE W. Vibrational spectrum of histidine and arginine in THz range[J]. Acta Physica Sinica,2007,56(2):781-785.
[5] 胡琼,王国营,刘刚,等.组氨酸电离能与红外光谱的密度泛涵理论计算研究[J].光谱学与光谱分析,2010,30(5):1192-1197. HU Q, WANG G Y, LIU G, et al. Ionization energies and infrared spectra studies of histidine using density functional theory[J]. Spectroscopy and Spectral Analysis,2010,30(5):1192-1197.
[6] 何发虎,毛希安.水溶液中组氨酸的14N NMR研究[J].光谱学杂志,1995,12(2):141-146. HE F H, MAO X A. 14N NMR studies of histidine in aqueous solutions[J]. Chinese Journal of Magnetic Resonance,1995,12(2):141-146.
[7] 刘凤阁,闫红彦,王佐成,等.气相赖氨酸分子手性转变机制的理论研究[J].武汉大学学报(理学版),2015,61(1):93-98. LIU F G, YAN H Y, WANG Z C, et al. Theoretical research on chiral change mechanism of gaseous lysine molecules[J]. Journal of Wuhan University(Science Edition),2015,61(1):93-98.
[8] 李忠,佟华,王佐成,等.基于氨基作H转移桥梁单体α-Ala的手性转变机理[J].复旦学报(自然科学版),2015,54(5):102-108. LI Z, TONG H, WANG Z C, et al. The chiral transition mechanism of monomer α-Alanine based on amino as H transfer bridge[J]. Journal of Fudan University(Natural Science),2015,54(5):102-108.
[9] 王佐成,范志琳,梅泽民,等.半胱氨酸分子手性转变及水分子的催化机理[J].武汉大学学报(理学版),2016,62(4):368-374. WANG Z C, FAN Z L, MEI Z M, et al. Chiral transformation of cysteine molecules and catalytic mechanism of water molecules[J]. Journal of Wuhan University(Science Edition),2016,62(4):368-374.
[10] 闫红彦,王佐成,邹晶,等.缬氨酸分子的手性转变及水分子的催化机理[J].中山大学学报(自然科学版),2016,55(2):68-75. YIAN H Y, WANG Z C, ZOU J, et al. Chiral en-antiomers transformation of valine and catalytic mecha-nism of water molecules[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(2):68-75.
[11] 黄志坚.氨基酸的构型和性质研究[D].合肥:中国科学技术大学,2006. HUANG Z J. Structures and Properties of the Amino Acids[D]. Hefei:University of Science and Technology of China,2006.
[12] BECKE A D. Density-functional thermochemistry Ⅲ-The role of exact exchange[J]. Chem Phys,1993,98(7):5648-5652.
[13] PARR R G, YANG W. Density-Functional Theory of Atoms and Molecules[M]. Oxford:Oxford University Press,1994.
[14] ALEKSANDR V M, CHRISTOPHER J C, DONALD G T. Universal slovation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. J Phys Chem B, 2009,113(18):6378-6396.
[15] GARRETT B C, TRUHLAR D G. Generalized transition state theory-Classical mechanical theory and applications to collinear reactions of hydrogen molecules[J]. Journal of Physical Chemistry,1979,83(8):1052-1079.
[16] GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. The Journal of Chemical Physics,1979,70(4):1593-1598.
[17] GONZALEZ C, SCHLEGEL H. Reaction path following in mass-weighted internal coordinates[J]. Journal of Physical Chemistry,1990,94(14):5523-5527.
[18] ISHIDA K, MOROKUMA K, KOMORNICKI A. The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H-+ CH4 →CH4+ H-*[J]. The Journal of Chemical Physics,1977,66(5):2153-2156.
[19] 徐光宪,黎乐民,王德民.量子化学(中册)[M].北京:科学出版社,1985:962-986. YU G X, LI L M, WANG D M. Quantum Chemistry(Middle)[M]. Beijing:Science Press,1985:962-986.
[20] BINKLEY J S, POPLE J A. Moeller-plesset theory for atomic ground state energies[J]. Int J Quantum Chem,1975,9(2):229-236.
[21] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09:Revision E.01[CP]. Pittsburgh:Gaussian, Inc,Wallingford CT,2013.
[22] GORB L, LESZCZYNSKI J. Intramolecular proton transfer in mono and dihydrated tautomers of guanine:An ab initio post hartree-fock study[J]. Am Chem Soc,1998,120:5024-5032.
[23] 王佐成,佟华,梅泽民,等.水环境下α-Ala分子手性转变机制的理论研究[J].吉林大学学报(理学版).2015,53(1):134-141. WANG Z C, TONG H, MEI Z M, et al. Theoretical research of α-alanine molecule chiral shift mechanism under the water environment[J]. Journal of Jilin University(Science Edition),2015,53(1):134-141.