1. Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, China;
2. Sichuan Civil-Military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, China
Abstract:Mobile data imply various information, including spatio-temporal characteristics and the social relationship of human activities, which have great value for human behavior exploration. In order to analyze and understand the activities of mobile users, a mobile data visual analytics framework is proposed focusing on users' activity understanding based on the spatio-temporal and social features of mobile data. And, a visual analytic system for mobile data is also built, which aims to explore mobile users' behavior patterns in different period, detect their social roles and discover their real social relationship. It has been examined with mobile data in a city, and the results prove the effectiveness of the proposed method.
[1] CHEN S, YUAN X, WANG Z, et al. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data[J]. IEEE Transactions on Visualization & Computer Graphics, 2016, 22(1):270.
[2] KRVGER R, LOHMANN S, THOM D, et al. Using social media content in the visual analysis of movement data[J]. Research Microsoft Com, 2012, 97(11):31-32.
[3] ANDRIENKO G, ANDRIENKO N, WROBEL S. Visual analytics tools for analysis of movement data[J].ACM SIGKDD Explorations Newsletter, 2007, 9(2):38-46.
[4] CHU D, SHEETS D A, ZHAO Y, et al. Visualizing hidden themes of Taxi movement with semantic transformation[C]//Visualization Symposium (PacificVis). Piscataway:IEEE Press, 2014:137-144.
[5] GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196):779.
[6] ZHU Y, ZHANG Y, SHANG W, et al. Trajectory enabled service support platform for mobile users' behavior pattern mining[C]//Mobile and Ubiquitous Systems:NETWORKING & Services. Piscataway:IEEE Press, 2009:1-10.
[7] 谭钧元, 宋国杰, 谢昆青, 等. 一种有效的基于生活熵的移动用户分类算法[J]. 计算机研究与发展2009, 46:433-438. TAN J Y, SONG G J, XIE K Q, et al. An effective mining method for mobile subscribers based on life entropy[J]. Journal of Computer Research and Development, 2009, 46:433-438.
[8] SHAD S A.移动用户轨迹与行为模式挖掘方法研究[D]. 合肥:中国科学技术大学, 2013. SHAD S A. Mobile User Trajectory and Profile Mining[D]. Hefei:University of Science and Technology of China, 2013.
[9] CALABRESE F, PEREIRA F C, LORENZO G D, et al. The geography of taste:Analyzing cell-phone mobility and social events[J]. Lecture Notes in Computer Science, 2010, 6030:22-37.
[10] PULSELLI R M, ROMANO P, RATTI C, et al. Computing urban mobile landscapes through monitoring population density based on cell-phone chatting[J]. International Journal of Design & Nature & Ecodynamics, 2008, 3(2):121-134.
[11] READES J, CALABRESE F, SEVTSUK A, et al. Cellularcensus:Explorations in urban data collection[J]. IEEE Pervasive Computing, 2007, 6(3):30-38.
[12] DE MONTJOYE Y A, HIDALGO C A, VERLEYSEN M, et al. Unique in the crowd:The privacy bounds of human mobility[J]. Scientific Reports, 2013, 3(6):1376.
[13] WU W, XU J, ZENG H, et al. TelCoVis:Visual exploration of co-occurrence in urban human mobility based on telco data[J].IEEE Transactions on Visualization & Computer Graphics, 2016, 22(1):935.
[14] GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns[J].Nature, 2008, 453(7196):779.
[15] ANDRIENKO G, ANDRIENKO N, FUCHS G.Business Intelligence[M]. Berlin:Springer International Publishing, 2015:39-59.
[16] ARIETTA S M, EFROS A A, RAMAMOORTHI R, et al. City forensics:Using visual elements to predict non-visual city attributes[J].IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12):2624-2633.