Landuse optimizing allocation based on extensible multi-objective ant colony algorithm
MO Zhiliang1,2, DU Zhenhong1,2, ZHANG Feng1,2, LIU Renyi1,2
1. Zhejiang Provincial Key Lab of GIS, Zhejiang University, Hangzhou 310028, China;
2. Department of Geographic Information Science, Zhejiang University, Hangzhou 310027, China
Abstract:The traditional land use optimizing allocation model can't flexibly response to the changing optimizing requirements under the realities, and can't achieve the optimization of land use in spatial layout. This paper abstracts modeling based on the common optimizing targets, and establishes an extensible multi-objective system combining with the ant colony algorithm. Finally, a land use optimizing allocation model based on extensible multi-objective ant colony algorithm is constructed, making the land use optimizing allocation more flexible under the direction of different multi-objective systems, realizing the unification of land use optimizing allocation in structure and spatial layout, and providing a more practical reference for land use planning. The Xiaoshan district of Hangzhou is an area of good economic, social and ecological environment, which makes it a good choice of our study area to verify the model. The experimental results show that the model can reasonably allocate the land use layout of the study area under the guidance of multi-objective system, promote the sustainable development of regional land use, and give different optimization schemes for different multi-objective systems.
莫致良, 杜震洪, 张丰, 刘仁义. 基于可扩展多目标蚁群算法的土地利用优化配置[J]. 浙江大学学报(理学版), 2017, 44(6): 649-659,674.
MO Zhiliang, DU Zhenhong, ZHANG Feng, LIU Renyi. Landuse optimizing allocation based on extensible multi-objective ant colony algorithm. Journal of ZheJIang University(Science Edition), 2017, 44(6): 649-659,674.
[1] 高小永. 基于多目标蚁群算法的土地利用优化配置[D].武汉:武汉大学,2010. GAO X Y. Optimizing Land Use Allocation Based on Multi-Objective Ant Colony Algorithm[D]. Wuhan:Wuhan University,2010.
[2] 刘彦随,陈百明.中国可持续发展问题与土地利用/覆被变化研究[J].地理研究, 2002, 21(3):324-330. LIU Y S, CHEN B M. The study framework of land use/cover change based on sustainable development in China[J]. Geographical Research, 2002, 21(3):324-330.
[3] 张鸿辉,曾永年,谭荣,等.多智能体区域土地利用优化配置模型及其应用[J].地理学报, 2011, 66(7):972-984. ZHANG H H, ZENG Y N, TAN R, et al. A model for regional land use optimization allocation based on multi-agent system and its application[J]. ACTA Geographica Sinica, 2011, 66(7):972-984.
[4] 覃刚力,杨家本. 自适应调整信息素的蚁群算法[J].信息与控制,2002, 31(3):198-201. QIN G L, YANG J B. An improved ant colony algorithm based on adaptively adjusting pheromone[J]. Information and Control, 2002, 31(3):198-201.
[5] COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Ecal91-European Conference on Artificial Life. Paris:Elsevier Publishing, 1991:134-142.
[6] DORIGO M. Ant colonies for the traveling salesman problem[J]. Biosystems, 1997, 43(2):73-81.
[7] 刘建华,杨建国,刘华平,等.基于势场蚁群算法的移动机器人全局路径规划方法[J].农业机械学报,2015, 46(9):18-27. LIU J H, YANG J G, LIU H P, et al. Robot global path planning based on ant colony optimization with artificial potential field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):18-27.
[8] 李倩,张惠珍,CESAR B.带投资约束P-中位问题的混合蚁群算法[J].计算机应用研究,2017, 33(6):1-7. LI Q, ZHANG H Z, CESAR B. Hybrid ant colony algorithm for capacitated p-median problem with investment[J]. Application Research of Computers, 2017, 33(6):1-7.
[9] 高晋凯,侯文,杨冰倩,等.基于蚁群算法的模糊C均值聚类的改进研究[J].现代雷达,2016, 38(11):30-34, 39. GAO J K, HOU W, YANG B Q, et al. Improved fuzzy C-means clustering based on ant colony algorithm[J]. Modern Radar, 2016, 38(11):30-34, 39.
[10] DAS B, SINGH A, PANDA S N, et al. Optimal land and water resources allocation policies for sustainable irrigated agriculture[J]. Land Use Policy, 2015, 42(42):527-537.
[11] 徐磊,董捷,张安录.湖北省土地利用减碳增效系统仿真及结构优化研究[J].长江流域资源与环境,2016, 25(10):1528-1536. XU L, DONG J, ZHANG A L. Study on simulation and structure optimization of land use carbon reduction and efficiency improvement system of Hubei province[J]. Resources and Environment in the Yangtze Basin, 2016, 25(10):1528-1536.
[12] 黄海.基于改进粒子群算法的低碳型土地利用结构优化——以重庆市为例[J].土壤通报,2014, 45(2):303-306. HUANG H. Optimization of low-carbon land use structure based on improved particle swarm optimization algorithm:A case study in Chongqing municipality[J]. Chinese Journal of Soil Science, 2014, 45(2):303-306.
[13] CHEN P Y, TUNG C P, LIN W C, et al. Spatial optimization procedure for land-use arrangement in a community based on a human comfort perspective[J]. Paddy and Water Environment, 2016, 14(1):71-83.
[14] 袁满,刘耀林.基于多智能体遗传算法的土地利用优化配置[J]. 农业工程学报,2014, 30(1):191-199. YUAN M, LIU Y L. Land use optimization allocation based on multi-agent genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1):191-199.
[15] LIU Y, LIU Y, PENG J, et al. Psola:A heuristic land-use allocation model using patch-level operations and knowledge-informed rules[J]. Plos One, 2016, 11(6):e0157728.
[16] 刘艳芳. 经济地理学:原理、方法与应用[M]. 北京:科学出版社,2006. LIU Y F.Economic Geography:Principles, Methods and Applications[M]. Beijing:Science Press,2006.
[17] GOSS S, ARON S, DENEUBOURG J L, et al. Self-organized shortcuts in the Argentine ant[J]. The Science of Nature, 1989, 76(12):579-581.
[18] BIN A, MA S F, SHUO W. Land-use zoning in fast developing coastal area with ACO model for scenario decision-making[J]. Geospatial Information, 2015, 18(1):43-55.
[19] 李颖,黄贤金,甄峰. 江苏省区域不同土地利用方式的碳排放效应分析[J]. 农业工程学报,2008, 24(S2):102-107. LI Y, HUANG X J, ZHEN F. Effects of land use patterns on carbon emission in Jiangsu province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(S2):102-107.
[20] 周婷婷,毛春梅.我国土地利用与碳排放的关系研究[J].安徽农业科学,2012, 40(2):1175-1177. ZHOU T T, MAO C M. Research on the relation between land use and carbon emissions in China[J]. Journal of Anhui Agricultural Sciences, 2012, 40(2):1175-1177.
[21] 谢高地,甄霖,鲁春霞,等.一个基于专家知识的生态系统服务价值化方法[J].自然资源学报,2008, 23(5):911-919. XIE G D, ZHEN L, LU C X, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(5):911-919.