摘要美式期权给予持有者在到期日之前任何时刻的权利,因涉及最佳执行时刻问题定价较为复杂. Monte Carlo方法其估计误差及收敛速度与问题的维数独立,可较好地处理高维衍生证券问题,且方法灵活易于实现.利用最小二乘蒙特卡洛方法(LSM),结合存储量减小技术与方差缩减技术,将 Monte Carlo 模拟方法应用于多标的资产的美式期权定价,并比较、分析了不同方差缩减技术的效果及适用范围.
Abstract:American options allow holders to execute an order at any moment before due date. However, the pricing of American options is comparatively complicated because it involves the optimal stopping rule. Monte Carlo method is flexible and easy to implement. Besides, its error estimation and convergence rate are independent of the dimension of the problem, providing Monte Carlo method a great advantage over classical numerical approaches in option pricing. This paper combines the Least Square Monte Carlo method with some variance reduction techniques and a memory reduction approach to price multi-asset American-style options, then compares the efficiency of different variance reduction techniques, and analyzes their application.
陈金飚, 林荣斐. 基于方差缩减的高维美式期权Monte Carlo模拟定价[J]. 浙江大学学报(理学版), 2017, 44(5): 542-547.
CHEN Jinbiao, LIN Rongfei. A Monte Carlo simulation on pricing of high dimensional American options based on variance reduction. Journal of ZheJIang University(Science Edition), 2017, 44(5): 542-547.
[1] JIN X,YANG C Y.Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions[J].International Review of Financial Analysis,2016,44:65-77.
[2] BALAJEWICZ M,TOIVANEN J.Reduced order models for pricing American options under stochastic volatility and jump-diffusion models[J].Procedia Computer Science,2016,80:734-743.
[3] CHEN W T,XU X,ZHU S P.A predictor-corrector approach for pricing American options under the finite moment log-stable model[J].Applied Numerical Mathematics,2015,97:15-29.
[4] JIN X,LI X,HWEE H T,et al.A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction[J].European Journal of Operational Research,2013,231(2):362-370.
[5] HU W B,LI S H.The forward-path method for pricing multi-asset American-style options under general diffusion processes[J].Journal of Computational and Applied Mathematics,2014,263:25-31.
[6] HU Y H,LI Q,CAO Z Y,et al.Parallel simulation of high-dimensional American option pricing based on CPU versus MIC[J].Concurrency and Computation-practice & Experience,2015,27(5):1110-1121.
[7] BASTANI A F,ZAHMADI Z,DAMIRCHELI D.A radial basis collocation method for pricing American options under regime-switching jump-diffusion models[J].Applied Numerical Mathematics,2013,65:79-90.
[8] LABUSCHAGNE C C A,BOETTICHER S T V.Dupire's formulas in the Piterbarg option pricing model[J].The North American Journal of Economics and Finance,2016,38:148-162.
[9] YU X S,LIU Q.Canonical least-squares Monte Carlo valuation of American options:Convergence and empirical pricing analysis[J].Mathematical Problems in Engineering,2014(1):1-13.
[10] 陈辉.期权定价的蒙特卡罗模拟方差缩减技术研究[J].统计与信息论坛,2008,23(7):86-96. CHEN H.Variance reduction techniques of Monte Carlo simulation methods in options pricing[J].Statistics & Information Tribune,2008,23(7):86-96.
[11] BOYLE P,BROADIE M,GLASSERMAN P.Monte Carlo methods for security pricing[J].Journal of Economic Dynamics and Control,1997,21:1267-1321.
[12] BARRAQUAND J, MARTINEAU D. Numerical valuation of high dimensional multivariate American securities[J].Journal of Financial and Quantitative Analysis,1995,30:383-405.
[13] BROADIE M,GLASSERMAN P.Pricing American-style securities using simulation[J].Journal of Economic Dynamics and Control,1997,21:1323-1352.
[14] LONGSTAFF F A, SCHWARTZ E S. Valuing American options by simulation:A simple least-squares approach[J].Review of Financial Studies,2001,14(1):113-147.
[15] CHAN R H,WONG C,YEUNG K.Pricing multi-asset American-style options by memory reduction Monte Carlo methods[J].Applied Mathematics and Computation,2006,179:535-544.