Abstract:The problem of finite-time synchronization of fractional-order multi-scroll systems with dead-zone input is studied. The sufficient conditions for the fractional order systems to get finite-time synchronization are obtained based on fractional order calculus theory. The research conclusion illustrates that fractional-order multi-scroll systems is finite-time chaos synchronization under proper conditions.
[1] YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J]. Chaos,Solition & Fractals,2005,26(3):913-920.
[2] CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos,Solition & Fractals,2009,41(5):2716-2724.
[3] PECORA L M, CAROLL T L. Synchronization in chaotic systems[J].Physics Review Letters,1990,64(8):821-824.
[4] WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J].Chaos,Solition & Fractals,2011,44(10):810-820.
[5] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(2):508-519.
[6] SUN Y P, LI J M,WANG J A,et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J].Chinese Physics B,2010,19(2):502-505.
[7] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(6):2405-2413.
[8] AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J].Applied Mathematics and Computation,2012,218(9):5757-5768.
[9] 孙宁,张化光,王智良.不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报:工学版,2010,44(7):1288-1291. SUN N,ZHANG H G,WANG Z L.Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University:Engineering Science, 2010,44(7):1288-1291.
[10] 余明哲,张友安.一类不确定分数阶混沌系统的滑模自适应同步[J].北京航空航天大学学报,2014,40(9):1276-1280. YU M Z,ZHANG Y A.Sliding mode adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1276-1280.
[11] 仲启龙,邵永辉,郑永爱.分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18-22. ZHONG Q L,SHAO Y H,ZHENG Y A.Synchronization of the fractional order chaotic systems based on TS models[J].Journal of Dynamics and Control,2015,13(1):18-22.
[12] 孙美美,胡云安,韦建明.多涡卷超混沌系统自适应滑模同步控制[J].山东大学学报:工学版,2015,45(6):46-49. SUN M M,HU Y A,WEI J M. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control[J].Journal of Shandong University:Engineering Edition,2015,45(6):46-49.
[13] 刘恒,余海军,向伟.带有未知扰动的多涡卷混沌系统修正函数时滞投影同步[J].物理学报,2012,61(18):5031-5036. LIU H, YU H J,XIANG W. Modified function projective lag synchronization for multi-scroll chaotic system with unknown disturbances[J].Acta Phys Sin,2012,61(18):5031-5036.
[14] 毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报:理工版,2016,33(1):96-101.MAO B X,WANG Z W. Finite-time synchronization of a class of fractional-order complex network systems[J].Journal of Shenzhen University:Science and Engineering,2016,33(1):96-101.
[15] 田小敏,费树岷,柴琳.具有死区输入的分数阶混沌系统的有限时间同步[J].控制理论与应用,2015,32(9):1240-1245. TIAN X M,FEI S M,CHAI L. Finite-time synchronization of chaotic systems by considering dead-zone phenomenon[J].Control Theory and Applications,2015,32(9):1240-1245.
[16] PODLUBNY. Fractional Differential Equation[M].New York: Academic Press,1999.
[17] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems,2005,17(2):101-127.
[18] MOHAMMAD P A, SOHRAB K, GHASSEM A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling,2011,35(6):3080-3091.