Oscillation criteria of second-order Emden-Fowler nonlinear variable delay differential equations
YANG Jiashan1,2
1. School of Information and Electronic Engineering, Wuzhou University, Wuzhou 543002, Guangxi Zhuang Autonomous Region, China;
2. Laboratory of Complex Systems Simulation and Intelligent Computing, Wuzhou University, Wuzhou 543002, Guangxi Zhuang Autonomous Region, China
Abstract:The purpose of this article is to study the oscillatory behavior of second-order Emden-Fowler nonlinear neutral functional differential equations with variable delay. By using the Riccati transformation, integral averaging technique and differential inequalities, we established a new oscillation criteria and a comparison theorem for the oscillation of the equations. These criteria dealing with some cases have not been covered by the existing results in the literature.
[1] HASANBULLI M, ROGOVCHENKO Y V. Oscillation criteria for second order nonlinear neutral differential equations[J]. Applied Mathematics and Computation,2010,215(12):4392-4399.
[2] LI T X, AGARWAL R P, BOHNER M. Some oscillation results for second-order neutral differential equations[J]. The Journal of the Indian Mathematical Society,2012,79(1/2/3/4):97-106.
[3] LI T X, AGARWAL R P, BOHNER M. Some oscillation results for second-order neutral dynamic equations[J]. Hacettepe Journal of Mathematics and Statistics,2012,41(5):715-721.
[4] LI T X, ROGOVCHENKO Y V. Oscillatory behavior of second-order nonlinear neutral differential equations[J]. Abstract and Applied Analysis,2014:ID143614.
[5] SUN S R, LI T X, HAN Z L,et al. Oscillation theorems for second-order quasilinear neutral functional differential equations[J]. Abstract and Applied Analysis,2012:ID819342.
[6] ZHANG C H, AGARWAL R P, BOHNER M, et al. New oscillation results for second-order neutral delay dynamic equations[J]. Advances in Difference Equations,2012:227.
[7] ZHONG J,OUYANG Z, ZOU S. An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities[J]. Applied Mathematics Letters,2011,24(8):1449-1454.
[8] AGARWAL R P, BOHNER M, LI T X, et al. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations[J]. Appl Math Comput,2013,225:787-794.
[9] YANG J S, QIN X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales[J]. Advances in Difference Equations,2015:97.Doi:10.1186/S13662-014-0328-X.
[10] YANG J S, QIN X W, ZHANG X J.Oscillation criteria for certain second-order nonlinear neutral delay dynamic equations with damping on time scales[J]. Mathematica Applicata,2015,28(2):439-448.
[11] YE L, XU Z. Oscillation criteria for second order quasilinear neutral delay differential equations[J]. Applied Mathematics and Computation,2009,207(2):388-396.
[12] LI T X, ROGOVCHENKO Y V, ZHANG C H. Oscillation of second-order neutral differential equations[J]. Funkcialaj Ekvacioj,2013,56(1):111-120.
[13] AGARWAL R P, BOHNER M, LI T X, et al. Oscillation of second-order Emden-Fowler neutral delay differential equations[J]. Annali di Matematica Pura ed Applicata,2014,193(6):1861-1875.
[14] 黄记洲,符策红.广义Emden-Fowler方程的振动性[J].应用数学学报,2015,38(6):1126-1135. HUANG J Z, FU C H. Oscillation criteria of generalized Emden-Fowler equations[J]. Acta Mathematicae Applicatae Sinica,2015,38(6):1126-1135.
[15] 杨甲山,方彬.一类二阶中立型微分方程的振动性[J].数学的实践与认识,2013,43(23):193-197. YANG J S, FANG B. Oscillation of a class of second order neutral differential equations[J]. Mathematics in Practice and Theory,2013,43(23):193-197.
[16] 杨甲山.具阻尼项的高阶中立型泛函微分方程的振荡性[J].中山大学学报:自然科学版,2014,53(3):67-72. YANG J S. Oscillation of higher order neutral functional differential equations with damping[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2014,53(3):67-72.
[17] 杨甲山.具正负系数和阻尼项的高阶泛函微分方程的振动性[J].华东师范大学学报:自然科学版,2014(6):25-34. YANG J S. Oscillation of higher order functional differential equations with positive and negative coefficients and damping term[J]. Journal of East China Normal University:Natural Science,2014(6):25-34.
[18] XING G J, LI T X, ZHANG C H. Oscillation of higher-order quasi-linear neutral differential equations[J]. Advances in Difference Equations,2011:45.Doi:10.1186/1687-1847-2011-45.
[19] 杨甲山,覃学文.具阻尼项的高阶Emden-Fowler型泛函微分方程的振荡性[J].中山大学学报:自然科学版,2015,54(4):63-68. YANG J S, QIN X W. Oscillation of higher hrder Emden-Fowler functional differential equations with damping[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2015,54(4):63-68.
[20] 杨甲山,黄劲.时间模上一类二阶非线性动态方程振荡性的新准则[J].华东师范大学学报:自然科学版,2015(3):9-15. YANG J S, HUANG J. New criteria for oscillation of certain second-order nonlinear dynamic equations on time scales[J]. Journal of East China Normal University:Natural Science,2015(3):9-15.
[21] 杨甲山,孙文兵.具正负系数的二阶差分方程的振动性[J].山东大学学报:理学版,2011,46(8):59-63. YANG J S, SUN W B. Oscillation of second order difference equations with positive and negative coefficients[J]. Journal of Shandong University:Natural Science,2011,46(8):59-63.
[22] 赵雪芹.非线性微分方程精确解及振动性[D].大连:大连理工大学,2007. ZHAO X Q. Exact Solutions and Oscillation of Nonlinear Differential Equations[D]. Dalian:Dalian University of Technology,2007.
[23] 莫协强,张晓建,杨甲山.一类高阶泛函微分方程非振动解的存在性[J].四川师范大学学报:自然科学版,2014,37(6):861-866. MO X Q, ZHANG X J, YANG J S. Existence of nonoscillatory solutions for a class of higher order functional differential equations[J]. Journal of Sichuan Normal University:Natural Science,2014,37(6):861-866.
[24] YANG J S. Oscillation of third-order delay dynamic equations on time scales[J]. Chinese Quarterly Journal of Mathematics,2014,29(3):447-456.
[25] 杨甲山.具可变时滞的二阶非线性中立型泛函微分方程的振动性[J].浙江大学学报:理学版,2016,43(3):257-263. YANG J S. Oscillation of certain second-order nonlinear neutral functional differential equations with variable delay[J]. Journal of Zhejiang University:Science Edition,2016,43(3):257-263.