A study on meet computation of spatio-temporal parcel based on conformal geometric algebra
WANG Qiaoyan1,2, JIANG Xiaomin1,2, ZHANG Feng1,2, DU Zhenhong1,2, LIU Renyi1,2
1. Zhejiang Provincial Key Laboratory of Resources and Environmental Information System, Zhejiang University, Hangzhou 310028, China;
2. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Abstract:Geometric algebra has advantages in solving problems of geometric object modeling and multidimensional data analysis. This paper conducts studies on the meaning, construction and application of its two operators:meet and join. By exploiting their merits of multidimensional consistency and high dimension adaptivity, we propose a spatio-temporal parcel meet algorithm. We also give definitions and representations of 3D and 4D spatio-temporal parcel within the domain of conformal geometric algebra and spatio-temporal algebra. The algorithm is successfully applied to conduct the topology computation of three dimension spatio-temporal parcels and achieves satisfactory results.. Experiment show that our approach provides a novel and effective way for the representation and topology computation of three dimensional spatio-temporal parcel and hopefully a new resolution for four dimensional spatio-temporal parcels.
王巧燕, 蒋晓敏, 张丰, 杜震洪, 刘仁义. 基于几何代数的时空宗地meet计算研究[J]. 浙江大学学报(理学版), 2017, 44(1): 76-83.
WANG Qiaoyan, JIANG Xiaomin, ZHANG Feng, DU Zhenhong, LIU Renyi. A study on meet computation of spatio-temporal parcel based on conformal geometric algebra. Journal of ZheJIang University(Science Edition), 2017, 44(1): 76-83.
[1] 李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. LI H B. Conformal geometric algebra-A new framework for computational geometry[J]. Journal of Computer Aided Design & Computer Graphics,2005,17(11):2383-2393.
[2] DORST L, FONTIJNE D, MANN S. Geometric Algebra for Computer Science:An Object-Oriented Approach to Geometry[M]. San Francisco:Morgan Kaufmann Publishers Inc,2007.
[3] 罗文,袁林旺,俞肇元,等.基于共形几何代数的三维地理场景建模与表达[J].测绘通报,2012(10):28-31. LUO W, YUAN L W, YU Z Y, et al. Conformal geometric algebra-based three dimensional scene modeling and expressing[J]. Bulletin of Surveying and Mapping,2012(10):28-31.
[4] 宗真,袁林旺,罗文,等.三角网求交的共形几何代数算法[J].测绘学报,2014(2):200-207. ZONG Z, YUAN L W, LUO W, et al. Triangulation intersection algorithm based on conformal geometric algebra[J]. Acta Geodaetica et Cartographica Sinica,2014(2):200-207.
[5] DÖNER F, THOMPSON R, STOTER J, et al. 4D cadastres:First analysis of legal, organizational and technical impact-With a case study on utility networks[J]. Land Use Policy,2010,27(4):1068-1081.
[6] DÖNER F, THOMPSON R, STOTER J, et al. Solutions for 4D cadastre-with a case study on utility networks[J]. International Journal of Geographical Information Science,2011,25(7):1173-1189.
[7] SONG W, YANG X. A spatio-temporal cadastral data model based on space-time composite model[C]//International Conference on Geoinformatics. Kaifeng:IEEE,2013:1-4.
[8] CLARAMUNT C, JIANG B. An integrated representation of spatial and temporal relationships between evolving regions[J]. Journal of Geographical Systems,2001,3(4):411-428.
[9] 史云飞,郭仁忠,李霖,等.四维地籍的建立与分析[J].武汉大学学报:信息科学版,2014,39(3):322-326. SHI Y F, GUO R Z, LI L, et al. Establishment and analysis 4D cadastre[J]. Geomatics and Information Science of Wuhan University,2014,39(3):322-326.
[10] 俞肇元,袁林旺,胡勇,等.基于几何代数的矢量时空数据表达与建模方法[J].地球信息科学学报,2012,14(1):67-73. YU Z Y,YUAN L W, HU Y, et al. Spatio-temporal vector data modeling based on geometric algebra[J].Journal of Geo-Information Science,2012,14(1):67-73.
[11] HESTENES D. Space-Time Algebra[M]. Switzerland:Springer International Publishing,1966.
[12] 李武明,张雪峰.时空平面的Clifford代数与Abel复数系统[J].吉林大学学报:理学版,2007,45(5):748-752. LI W M, ZHANG X F. Clifford algebra of spacetime plane and Abel complex number system[J]. Journal of Jilin University:Science Edition,2007,45(5):748-752.
[13] 李武明.时空代数的若干性质及应用[J].通化师范学院学报,2004,25(8):1-3. LI W M. The properties and application of the space time algebra[J]. Journal of Tonghua Teachers College,2004,25(8):1-3.
[14] 张玲玲,史云飞,郭仁忠,等.三维地籍产权体的定义与表达[J]. 地球信息科学学报,2010,12(2):207-213. ZHANG L L, SHI Y F, GUO R Z, et al. Definition and representation of property volume of three dimensional cadastre[J].Journal of Geo-Information Science,2010,12(2):207-213.
[15] 袁林旺. 基于几何代数的多维统一GIS[M].北京:科学出版社,2012. YUAN L W.Multi-dimensional Unified GIS Base on Geometric Algebra[M].Beijing:Science Press,2012.
[16] CAMERON J, LASENBY J. Oriented conformal geometric algebra[J].Advances in Applied Clifford Algebras,2008,18(3/4):523-538.
[17] STOLFI J.Oriented Projective Geometry:A Framework for Geometric Computations[M]. Boston:Academic Press,1991.