Abstract:To improve the global convergence ability and rate of particle swarm optimization, an improved particle swarm optimization algorithm based on dynamic learning factors and sharing method is proposed. The inertia weight factor of the algorithm decreases non-linearly, and the learning factor changes dynamically with the descending. A sharing fitness function is introduced on the basis of dynamic regulation. When the algorithm is stagnated without reaching termination, part of the particles will be selected according to the distance between particles and optimal solution. The chosen particles will be re-initialized as a new swarm and be evaluated by sharing fitness. The old and new swarms follow their own local solutions respectively until the end of the iteration. Simulation results of four typical multimodal functions show that the modified algorithm can greatly enhance the rate of the optimal solution searching and improve the global convergence performance of PSO.
[1] 龙泉,刘永前,杨勇平.基于粒子群优化BP神经网络的风电机组齿轮箱故障诊断方法[J].太阳能学报,2012,33(1):120-125. LONG Quan, LIU Yongqian, YANG Yongping. Fault diagnosis method of wind turbine gearbox based on BP neural network trained by particle swarm optimization algorithm[J].Acta Energiae Solaris Sinica,2012,33(1):120-125.
[2] 朱艳伟,石新春,但扬清,等.粒子群优化算法在光伏阵列多峰最大功率点跟踪中的应用[J].中国电机工程学报,2012,32(4):42-48. ZHU Yanwei, SHI Xinchun, DAN Yangqing, et al. Application of PSO algorithm in global MPPT for PV array[J]. Proceedings of the CSEE,2012,32(4):42-48.
[3] 王登科,李忠.基于粒子群优化与蚁群优化的云计算任务调度算法[J].计算机应用与软件,2013,30(1):290-293. WANG Dengke, LI Zhong. A task scheduling algorithm based on PSO and ACO for cloud computing[J]. Computer Applications and Software,2013,30(1):290-293.
[4] KHARE A, RANGNEKAR S. A review of particle swarm optimization and its applications in solar photovoltaic system[J]. Applied Soft Computing,2013,13(5):2997-3006.
[5] GANDOMI A H, YUN G J, YANG X S, et al. Chaos-enhanced accelerated particle swarm optimization[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(2):327-340.
[6] WANG G G, GANDOMI A H, YANG X S, et al. A novel improved accelerated particle swarm optimization algorithm for global numerical optimization[J]. Engineering Computations,2014,31(7):1198-1220.
[7] 张健,朱旭东,王真.一个新的动态约束因子PSO算法[J].河北工业大学学报,2010,39(003):51-55. ZHANG Jian, ZHU Xudong, WANG Zhen. A new dynamic constrain factor particle swarm optimization algorithm[J]. Journal of Heibei University of Technology,2010,39(3):51-55.
[8] KENNEDY J. Particle Swarm Optimization[M]//SAMMUT C, WEBB G I. Encyclopedia of Machine Learning. New York:Springer US,2010:760-766.
[9] GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodal function optimization[C]//Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application. Hillsdale:L Erlbaum Associates Inc,1987:41-49.
[10] LI T, WEI C, PEI W. PSO with sharing for multimodal function optimization[C]//Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003. Nanjing:IEEE,2003(1):450-453.
[11] 白瑞林,王利峰.一种基于共享法的改进型粒子群优化算法[C]//2005中国控制与决策学术年会论文集(上).沈阳:东北大学出版社,2005:795-798. BAI Ruilin, WANG Lifeng. A modified particle swarm optimization algorithm based on sharing method[C]//Proceeding of 2005 Chinese Control and Decision Conference. Shenyang:Northeastern University Press,2005:795-798.
[12] 刘衍民,隋常玲,牛奔.解决约束优化问题的改进粒子群算法[J].计算机工程与应用,2011(12):23-26. LIU Yanmin, SUI Changling, NIU Ben. Improved particle swarm optimizer for constrained optimization problems[J]. Computer Engineering and Applications,2011(12):23-26.
[13] 邬啸.一种对粒子群算法惯性权重的改进[J].计算机时代,2010(10):25-27. WU Xiao. An improvement for inertia weight of particle swarm optimization[J]. Computer Era,2010(10):25-27.
[14] 周飞红,廖子贞.自适应惯性权重的分组并行粒子群优化算法[J].计算机工程与应用,2014,50(8):40-44. ZHOU Feihong, LIAO Zizhen. Grouping parallel particle swarm optimization algorithm with adaptive inertia weight[J]. Computer Engineering and Applications,2014,50(8):40-44.