Abstract:We present a Dancer-type unilateral global bifurcation result for a class of fourth-order two-point boundary value problem x""+kx"+lx=λh(t)x+g(t, x,λ), 0< t< 1,x(0)=x(1)=x'(0)=x'(1)=0. Under some natural hypotheses on the perturbation function g:(0,1)×R2→R, we show that (λk, 0) is a bifurcation point of the above problem. And there are two distinct unbounded continuas, Ck+ and Ck-, consisting of the bifurcation branch Ck from (λk, 0), where λk is the k-th eigenvalue of the linear problem corresponding to the above problems. As an application of the above result, the global behavior of the components of nodal solutions of the following problem x""+kx"+lx=rh(t)f(x), 0< t< 1, x(0)=x(1)=x'(0)=x'(1)=0 is studied. We obtain the existence of multiple nodal solutions for the problem if f0=∞, f∞ ∈ (0, ∞), f0=f(s)/s, f∞=f(s)/s.
基金资助:Supported by the National Natural Science Foundation of China (11561038); the Gansu Provincial Natural Science Foundation(145RJZA087).
作者简介: SHEN Wenguo(1963-),ORCID:http://orcid.org/0000-0001-7323-1887,Doctor,Professor,the field of interest is nonlinear functional differential equations, E-mail:shenwg369@163.com.
引用本文:
沈文国. 非线性项在零点非渐进增长的四阶边值问题单侧全局分歧[J]. 浙江大学学报(理学版), 2016, 43(5): 525-531.
SHEN Wenguo. Unilateral global bifurcation for fourth-order boundary value problem with non-asymptotic nonlinearity at 0. Journal of ZheJIang University(Science Edition), 2016, 43(5): 525-531.
[1] RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J]. J Funct Anal,1971(7):487-513.
[2] DANCER E N. On the structure of solutions of non-linear eigenvalue problems[J]. Indiana University Math J,1974,23:1069-1076.
[3] SHEN W G. Global structure of nodal solutions for a fourth-order two-point boundary value problem[J]. Applied Mathematics and Computation,2012,219(1):88-98.
[4] SHEN W G. Existence of nodal solutions of a nonlinear fourth-order two-point boundary value problem[J]. Boundary Value Problems,2012,2012(1):1-18.doi:10.1186/1687-2770-2012-31.
[5] DANCER E N. Bifurcation from simple eigenvaluses and eigenvalues of geometric multiplicity one[J]. Bull Lond Math Soc,2002, 34:533-538.
[6] LÓPEZ-GÓMEZ J. Spectral Theory and Nonlinear Functional Analysis[M]. Boca Raton: Chapman and Hall,2001.
[7] DAI G W, MA R Y. Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J]. J Differ Equ,2012,252:2448-2468.
[8] DAI G W, HAN X L. Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight[J]. Applied Mathematics and Computation,2013,219:9399-9407.
[9] KORMAN P. Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems[J]. Proceedings of the Royal Society of Edinburgh A,2004,134(1):179-190.
[10] MA R Y, GAO C H, HAN X L. On linear and nonlinear fourth-order eigenvalue problems with indefinite weight[J]. Nonlinear Anal Theory Methods Appl,2011,74(18):6965-6969.
[11] MA R Y, GAO C H. Nodal solutions of a nonlinear eigenvalue problem of the Euler-Bernoulli equation[J]. Math Anal Appl,2012,387(2):1160-1166.
[12] DEIMLING K. Nonlinear Functional Analysis[M]. New York: Springer-Verlag,1987.
[13] RYNNE B P. Global bifurcation for 2mth-order boundary value problems and infinitely many solu-tions of superlinear problems[J]. J Differential Equations,2003,188:461-472.
[14] WHYBURN G T. Topological Analysis, Princeton Mathematical Series No.23[M]. New Jersey: Princeton University Press,1958.
[15] MA R Y, AN Y L. Global structure of positive for superlinear second-order m-point boundary value problems[J]. Topological Methods in Nonlinear Analysis,2009,34(2):279-290.