Optimizations of peak points and branch radius of nonlinear T-S fuzzy system based on triangular fuzzy numbers
WANG Hongzhi1, TAO Yujie1, WANG Guijun2
1. School of Mathematics, Tonghua Normal University, Tonghua 134002, Jilin Province, China; 2. School of Mathematics Sciences, Tianjin Normal University, Tianjin 300387, China
Abstract:Single value fuzzifier is a mapping from a real value point to higher dimensional triangle fuzzy number in n-European space. It not only can overcome the noise of the input variables in constructing nonlinear T-S fuzzy system, but also can simplify the complicated calculation in the design of fuzzy inference engine. Firstly, a nonlinear T-S fuzzy system model is established based on the piecewise linear function and the single value fuzzifier. Secondly, the peak points and the branch radius in the equidistant subdivision universe are optimized by adopting the formula of barycenter of the generalized triangle. Finally, we verify that the optimized nonlinear T-S fuzzy system has good approximation effect by selecting the sample points.
王宏志, 陶玉杰, 王贵君. 基于三角形模糊数的非线性T-S模糊系统的峰值点和分量半径优化[J]. 浙江大学学报(理学版), 2016, 43(3): 264-270.
WANG Hongzhi, TAO Yujie, WANG Guijun. Optimizations of peak points and branch radius of nonlinear T-S fuzzy system based on triangular fuzzy numbers. Journal of ZheJIang University(Science Edition), 2016, 43(3): 264-270.
[1] TAKAGI T,SUGENO M. Fuzzy identification of system and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybern,1985,15:116-132. [2] YING H,DING Y S,LI S K, et al. Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximator[J].IEEE Transactions on Systems,Man and Cybernetics:A,1999,29(5):508-514. [3] ZENG K,ZHANG N R,XU W L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy system as universal approximator[J].IEEE Transactions on Fuzzy Systems,2000,8(6):773-780. [4] 曾珂,张乃尧,徐文立.线性 T-S模糊系统作为通用逼近器的充分条件[J].自动化学报, 2001, 27(5):606-612. ZENG Ke, ZHANG Naiyao, XU Wenli.Sufficient condition for linear T-S fuzzy systems universal approximator[J]. Acta Automatica Sinica, 2001,27(5): 606-612. [5] 刘普寅, 李洪兴. 广义模糊系统对于可积函数的逼近性[J].中国科学: E辑, 2000, 30 (5):413-423. LIU Puyin, LI Hongxing. Approximation of generalized fuzzy systems to integrable functions[J].Science in China: Ser E, 2000, 30(5):413-423. [6] LIU P Y,LI H X. Analyses for Lp (μ)-norm approximation capability of the generalized Mamdani fuzzy systems[J].Information Sciences,2001,138(2): 195-210. [7] 刘福才,马丽叶,邵静,等.一类非线性T-S模糊系统的通用逼近性[J].自动化与仪器仪表,2007,129(1):8-15. LIU Fucai,MA Liye,SHAO Jing, et al. Universal approximation of a class of nonlinear T-S fuzzy system [J]. Automation & Instrumentation, 2007,129(1):8-15. [8] 王贵君, 段晨霞. 广义分层混合模糊系统及其泛逼近性[J]. 控制理论与应用[HTSS], 2012,29 (5):673-680. WANG Guijun,DUAN Chenxia.Generalized hierarchical hybrid fuzzy system and its universal approximation[J]. Control Theory and Application, 2012,29(5):673-680. [9] 王贵君, 李晓萍, 隋晓琳. 广义Mamdani模糊系统依K-积分模的泛逼近性及其实现过程[J].自动化学报, 2014, 40(1):143-148. WANG Guijun, LI Xiaoping,SUI Xiaolin. Universal approximation and its realize process of generalized Mamdani fuzzy system in K-integral norms[J].Acta Automatica Sinica,2014,40(1):143-148. [10] 彭维玲.基于剖分模糊系统输入空间的多维分片线性函数的构造及逼近[J].系统科学与数学,2014,34(3):340-351. PENG Weiling. Structure and approximation of a multidimensional piecewise linear function based on the input space of subdivision fuzzy systems[J]. System Science and Mathematical Sciences,2014,34(3): 340-351. [11] 王宏志,陶玉杰,王贵君.基于网格分片线性函数构造的非齐次线性T-S模糊系统的逼近性分析[J].系统科学与数学,2015,35(11):1276-1290. WANG Hongzhi,TAO Yujie,WANG Guijun. Approximation analysis of nonhomogeneous linear T-S fuzzy system based on grid piecewise linear function structure[J].System Science and Mathematical Sciences, 2015,35(11):1276-1290. [12] 陶玉杰,王宏志,王贵君.Kp-积分模意义下广义Mamdani模糊系统逼近性能及其实现[J].电子学报,2015,43(11):2284-2291. TAO Yujie, WANG Hongzhi, WANG Guijun. Approximation ability and its realization of the generalized Mamdani fuzzy system in the sense of Kp-integral norm[J].Acta Electronica Sinica,2015,43(11):2284-2291. [13] 张国英,王贵君.基于三角形模糊化的非线性T-S模糊系统对p-可积函数的逼近性[J].浙江大学学报:理学版,2015,42(9):537-541. ZHANG Guoying,WANG Guijun.Approximation capability of nonlinear T-S fuzzy system based on triangular fuzzifier to p-integrable functions[J].Journal of Zhejiang University:Science Edition,2015,42(9):537-541. [14] 王立新.模糊系统与模糊控制教程[HTSS][M].北京:清华大学出版社,2003. WANG Lixin. A Course in Fuzzy Systems and Control[M]. Beijing:Tsinghua University Press,2003.