The automatic C2 continuous quintic Hermite interpolating spline with parameters
LI Juncheng1, XIE Wei2
1. Department of Mathematics, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan Province, China;
2. College of Science, Guilin University of Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, China
Abstract:In order to solve the problem that the cubic or quartic Hermite-type interpolating splines with shape parameters can not automatically satisfy C2 continuity, a new class of quintic Hermite interpolating spline with shape parameters is presented. The proposed spline not only has the same characteristics as the Hermite-type interpolating spline with shape parameters, but also automatically satisfies C2 continuity and can be controlled by the shape parameters when the interpolation conditions remain unchanged. Furthermore, a method for determining the optimal value of the shape parameters is given, which can make the quintic Hermite interpolating spline curve with the optimal interpolation effects.
YAN Lanlan, LIANG Qiongfeng. An extension of the Bézier model[J]. Applied Mathematics and Computation,2011,218(6):2863-2879.
[5]
LIU Xumin, XU Weixiang, GUAN Yong, et al. Hyperbolic polynomial uniform B-spline curves and surfaces with shape parameter[J]. Graphical Models,2010,72(1):1-6.
[6]
CAO Juan, WANG Guozhao. Non-uniform B-spline curves with multiple shape parameters[J]. Journal of Zhejiang University:Science C,2011,12(10):800-808.
[7]
左传桂,汪国昭.多形状参数的四阶均匀B样条曲线设计[J].浙江大学学报:理学版,2007,34(4):401-404. ZUO Chuangui, WANG Guozhao. Curve design of multi-parameter uniform B-spline blending function of order four[J]. Journal of Zhejiang University:Science Edition,2007,34(4):401-404.
[4]
徐迎博,喻德生.带形状参数的二次三角Bézier曲线形状分析[J].浙江大学学报:理学版,2013,40(1):35-41. XU Yingbo, YU Desheng. Shape analysis of quadratic trigonometric polynomial Bézier curves with a shape parameter[J]. Journal of Zhejiang University:Science Edition,2013,40(1):35-41.
[8]
左传桂,汪国昭.具有2个独立形状参数的四阶均匀B样条[J].浙江大学学报:理学版,2007,34(6):622-627. ZUO Chuangui, WANG Guozhao. Uniform B-spline of order four with independent shape parameters[J]. Journal of Zhejiang University:Science Edition,2007,34(6):622-627.
[2]
BASHIR U, ABBSA M, ALI J M. The G2 and C2 rational quadratic trigonometric Bézier curve with two shape parameters with applications[J]. Applied Mathematics and Computation,2013,219(20):10183-10197.
[3]
LI Juncheng. A class of cubic trigonometric Bézier curve with a shape parameter[J]. Journal of Information and Computational Science,2013,10(10):3071-3078.
[9]
谢进,檀结庆,刘植,等.一类带参数的有理三次三角Hermite插值样条[J].计算数学,2011,33(2):125-132. XIE Jin, TAN Jieqing, LIU Zhi, et al. A class of rational cubic trigonometric Hermite interpolating splines with parameters[J]. Mathematica Numerica Sinica,2011,33(2):125-132.
[12]
李军成,钟月娥,谢淳.带形状参数的三次三角Hermite插值样条曲线[J].计算机工程与应用,2014,50(17):182-185. LI Juncheng, ZHONG Yuee, XIE Chun. Cubic trigonometric Hermite interpolating splines curves with shape parameters[J]. Computer Engineering and Applications,2014,50(17):182-185.
[10]
谢进,檀结庆,李声锋.有理三次Hermite插值样条及其逼近形状[J].工程数学学报,2011,28(3):385-392. XIE Jin, TAN Jieqing, LI Shengfeng. Rational cubic Hermite interpolating spline and its approximation properties[J]. Chinese Journal of Engineering Mathematics,2011,28(3):385-392.
[11]
李军成,刘纯英,杨炼.带参数的四次Hermite插值样条[J].计算机应用,2012,32(7):1868-1870. LI Juncheng, LIU Chunying, YANG Lian. Quartic Hermite interpolating splines with parameters[J]. Journal of Computer Applications,2012,32(7):1868-1870.