Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (2): 131-142    DOI: 10.3785/j.issn.1008-9497.2019.02.001
Chinagraph 2018 会议专栏     
基于2D Chebyshev-Sine映射的图像加密算法
钟艳如1, 刘华役1, 孙希延2, 蓝如师1,*, 罗笑南1
1.桂林电子科技大学计算机与信息安全学院,广西桂林 541004
2.桂林电子科技大学信息与通信学院,广西桂林 541004
2D Chebyshev- Sine map for image encryption
Yanru ZHONG1, Huayi LIU1, Xiyan SUN2, Rushi LAN1,*, Xiaonan LUO1
1.School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004,Guangxi Zhuang Autonomous Region, China
2.School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, China
 全文: PDF(5445 KB)   HTML  
摘要: 混沌系统因对初始条件和参数具有极度的敏感性、遍历性和不可预测性,被广泛应用于图像加密领域。提出了一种二维映射——二维 Chebyshev-Sine映射。通过分析轨迹图得到映射,与其他混沌映射相比,此映射拥有更宽广的混沌范围和良好的遍历性,对初始条件和系统参数具有高度敏感性,实现成本相对较低。基于此,提出了一种线性混合层图像加密算法:通过行移位和列混合有效改变图像像素空间位置和像素频域中的值,同时使用了中国剩余定理的扩散原则。实验仿真结果证明,此加密算法具有抵抗差分攻击和选择明文攻击的性能,且运行速度快,安全性较高。
关键词: 二维Chebyshev-Sine映射中国剩余定理图像加密行移位列混合    
Abstract: Chaotic systems are extremely sensitive to initial conditions and system parameters, ergodicity, unpredictable, which are applied to the field of image encryption widely. This paper proposes a new scheme of combining chaos theory and image encryption-2D Chebyshev-Sine map. Through the analysis of the trajectory contours mapping and compared to the other chaos mapping, the map has a wide range of chaos and good ergodicity, is highly sensitive to the initial conditions and system parameters, and the cost is relatively low. On this basis, a linear mixed layer image encryption algorithm is proposed. In this algorithm, row shift and column mixing are used to change the pixel space position and pixel frequency domain, and the diffusion principle of Chinese remainder theorem is used. The results of simulation and analysis show that this encryption algorithm has the advantages of fast running speed, relatively high security, resistance to differential attack and performance against selective plaintext attack.
Key words: 2D Chebyshev-Sine map    Chinese remainder theorem    image encryption    row shift    column mixing
收稿日期: 2018-09-04 出版日期: 2019-03-25
CLC:  TP391  
基金资助: 国家自然科学基金资助项目(61562016).
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钟艳如
刘华役
孙希延
蓝如师
罗笑南

引用本文:

钟艳如, 刘华役, 孙希延, 蓝如师, 罗笑南. 基于2D Chebyshev-Sine映射的图像加密算法[J]. 浙江大学学报(理学版), 2019, 46(2): 131-142.

Yanru ZHONG, Huayi LIU, Xiyan SUN, Rushi LAN, Xiaonan LUO. 2D Chebyshev- Sine map for image encryption. Journal of Zhejiang University (Science Edition), 2019, 46(2): 131-142.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.02.001        https://www.zjujournals.com/sci/CN/Y2019/V46/I2/131

1 CHANGL H.An image fusion method based on feature decompoition[J]. Journal of Zhejiang University(Science Edition), 2018,45(4):416-419. DOI:10.3785/j.issn.1008-9497.2018.04.007
2 LIUY J, PANGY P, LIZ M, et al.Sketch based image retrieval based on abstract-level transform and convolutional neural networks[J]. Journal of Zhejiang University(Science Edition), 2016,43(6):657-663. DOI:10.3785/j.issn.1008-9497.2016.06.005
3 HEG G, ZHUP, CAOZ T,et al. Lyapunov exponent and chaotic area distribution of a chaotic neural network[J]. Journal of Zhejiang University(Science Edition), 2004,31(4):387-390. DOI:10.3321/j.issn:1008-9497.2004.04.007
4 FRIDRICHJ.Symmetric ciphers based on two-dimensional chaotic maps[J]. International Journal of Bifurcation & Chaos, 1998, 8(6):1259-1284. DOI:10.1142/s021812749800098x
5 HABUTSUT, NISHIOY, SASASEI, et al.A secret key cryptosystem by iterating a chaotic map[C]// International Conference on Theory and Application of Cryptographic Techniques. Berlin: Springer-Verlag, 1991,547:127-140. DOI:10.1007/3-540-46416-6_11
6 WANGX, ZHANGW, GUOW, et al.Secure chaotic system with application to chaotic ciphers[J]. Information Sciences, 2013, 221(1):555-570.DOI:10.1016/j.ins.2012.09.037
7 HUAZ, ZHOUY, PUN C M, et al.2D sine logistic modulation map for image encryption[J]. Information Sciences, 2015, 297(C):80-94. DOI:10.1016/j.ins.2014.11.018
8 HSIAOH I, LEE J.Color image encryption using chaotic nonlinear adaptive filter[J]. Signal Processing, 2015, 117(C):281-309. DOI:10.1016/j.sigpro.2015.06.007
9 LIUH, KADIRA.Asymmetric color image encryption scheme using 2D discrete-time map[J]. Signal Processing, 2015, 113:104-112. DOI:10.1016/j.sigpro.2015.01.016
10 WUY, ZHOUY, AGAIANS, et al.A symmetric image cipher using wave perturbations[J]. Signal Processing, 2014, 102(9):122-131. DOI:10.1016/j.sigpro.2014.03.015
11 BAOL, ZHOUY.Image encryption: Generating visually meaningful encrypted images[J]. Information Sciences, 2015, 324:197-207. DOI:10.1016/j.ins.2015.06.049
12 TEDMORIS, AL-NAJDAWIN.Image cryptographic algorithm based on the Haar wavelet transform[J]. Information Sciences, 2014, 269(11):21-34. DOI:10.1016/j.ins.2014.02.004
13 DIACONUA V, LOUKHAOUKHAK.An improved secure image encryption algorithm based on Rubik's cube principle and digital chaotic cipher[J]. Mathematical Problems in Engineering, 2013(6):1-10. DOI:10.1155/2013/848392
14 JIANGA P, QIK X, PANX M, et al.Image encryption algorithm based on hyperchaos and modified AES[J]. Radio Communications Technology, 2017, 43(4):22-25. DOI:10.3969/j.issn.1003-3114.2017.04.06
15 ZHAOR, WANGQ S, WENH P.Design of AES algorithm based on two dimensional logistic and Chebyshev chaotic mapping[J]. Microcomputer Information, 2008, 24(33):43-45. DOI:10.3969/j.issn.1008-0570.2008.33.018
16 ZHUZ L, ZHANGW, WONGK W, et al.A chaos-based symmetric image encryption scheme using a bit-level permutation[J]. Information Sciences An International Journal, 2011, 181(6):1171-1186.DOI:10.1016/j.ins.2010.11.009
17 ZHOUY, BAOL, CHENC L P.A new 1D chaotic system for image encryption[J]. Signal Processing, 2014, 97(7):172-182. DOI:10.1016/j.sigpro.2013.10.034
18 ARROYOD, RHOUMAR, ALVAREZG, et al.On the security of a new image encryption scheme based on chaotic map lattices[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2008,18(3):033118.DOI:10.1063/1.2959102
19 HUAZ, ZHOUY, CHENC L P.A new series-wound framework for generating 1D chaotic maps[C]// Digital Signal Processing and Signal Processing Education Meeting. Napa: IEEE, 2013: 118-123.DOI:10.1109/dsp-spe.2013.6642576
20 SHANNONC E.Communication theory of secrecy systems, 1945[J]. Bell System Technical Journal, 1949, 28(4):656-715.DOI:10.1002/j.1538-7305.1949.tb00928.x
21 CHENS, LYU J.Parameters identification and synchronization of chaotic systems based upon adaptive control[J]. Physics Letters A, 2002, 299(4):353-358.DOI:10.1016/S0375-9601(02)00522-4
22 LINGC, WUX, SUNS.A general efficient method for chaotic signal estimation[J]. IEEE Transactions on Signal Processing, 1999, 47(5):1424-1428.DOI:10.1109/78.757236
23 PAPADOPOULOSH E, WORNELLG W.Maximum-likelihood estimation of a class of chaotic signals[J]. IEEE Transactions on Information Theory,2002,41(1):312-317.DOI:10.1109/18.370091
24 WUX, HUH, ZHANGB.Parameter estimation only from the symbolic sequences generated by chaos system[J]. Chaos Solitons & Fractals, 2004, 22(2): 359-366.DOI:10.1016/j.chaos.2004.02.008
25 CHENGQINGL I, ARROYOD, KWOK-TUNGL O.Breaking a chaotic cryptographic scheme based on composition maps[J]. International Journal of Bifurcation & Chaos, 2009, 20(8): 2561-2568.
26 LIC, LIUY, ZHANGL Y, et al.Breaking a chaotic image encryption algorithm based on modulo addition and XOR operation[J]. International Journal of Bifurcation and Chaos, 2013, 23(4): 1350075.DOI:10.1142/s0218127413500752
27 SKROBEKA.Cryptanalysis of chaotic stream cipher[J]. Physics Letters A, 2007, 363(1/2):84-90.DOI:10.1016/j.physleta.2006.10.081
28 SHIJ.Chaotic and its performance analysis based on Chebyshev mapping[J]. Modern Electronic Technology, 2008, 31(23):93-96.DOI:10.3969/j.issn.1004-373X.2008.23.028
29 HUAZ Y, ZHOUY C.Image encryption using 2D logistic-adjusted-sine map[J]. Information Sciences, 2016,339:237-253.DOI:10.1016/j.ins.2016.01.017
30 LIUW, SUNK, ZHUC.A fast image encryption algorithm based on chaotic map[J]. Optics & Lasers in Engineering, 2016, 84: 26-36.DOI:10.1016/j.optlaseng.2016.03.019
31 AKKAA. Dual-mode floating- point adder architectures[J]. Journal of Systems Architecture, 2008, 54(12):1129-1142.DOI:10.1016/j.sysarc.2008.05.004
32 YANGK W, LIJ L, ZHANGR L.Application of chinese remainder theorem in cryptography[J]. Computer Technology and Development, 2014(1):238-241.
33 YANGF X.Fast image encryption algorithm based on Chebyshev mapping[J]. Journal of Cangzhou Normal University, 2016, 32(1):49-52.DOI:10.3969/j.issn.2095-2910.2016.01.015
34 GUOZ H, LIUD.Image encryption and compression algorithm based 2D phased linear Chaotic map coupling Chinese remainder theorem[J]. Computer Applications and Software, 2015, 32(5):288-291.DOI:10.3969/j.issn.1000-386x.2015.05.070
35 LIUY, ZHAIL.An optimized interference alignment algorithm based on Max-SINR criterion for MIMO system[J]. Journal of Communications, 2015,10(6) :450 -456.DOI:10.12720/jcm.10.6.450-456
36 WU Y YANGG L, JINH X, et al. Image encryption using the two-dimensional logistic chaotic map[J]. Journal of Electronic Imaging, 2012, 21(1):3014.DOI:10.1117/1.jei.21.1.013014
37 ZHOUY, BAOL, CHENC L P.Image encryption using a new parametric switching chaotic system[J]. Signal Processing, 2013, 93(11): 3039-3052. DOI:10.1016/j.sigpro.2013.04.021
38 WUY, NOONANJ P, AGAIANS. A wheelswitch chaotic system for image encryption[C] //Proceeding 2011 International Conference on System Science and Engineering. Macao: IEEE,2011.DOI:10.1109/icsse.2011.5961867
39 CHENG, MAOY, CHUIC K.A symmetric image encryption scheme based on 3D chaotic cat maps[J].Chaos Solitons & Fractals, 2004, 21(3):749-761.DOI:10.1016/j.chaos.2003.12.022
40 WANGC H, LINY,et al. A novel fourdimensional multi-wing hyper-chaotic attractor and its application in image encryption[J]. Acta Phys Sin, 2014(24):97-106.DOI:10.7498/aps.63.240506
41 WANGY R, ZHUW J, ZHANX S. Study on scrambling capability based on image encryption[J].Computer Engineering and Design , 2006, 27(24):4729-4731.DOI:10.3969/j.issn.1000-7024.2006.24.035
42 GALLASJ A.Structure of the parameter space of the Hénon map[J]. Physical Review Letters ,1993 ,70(18):27.DOI:10.1103/physrevlett.70.2714
[1] 罗月童, 韩承村, 杜华, 严伊蔓. 基于拉伸特征的B-Rep→CSG转换算法及其应用[J]. 浙江大学学报(理学版), 2021, 48(2): 151-158.
[2] 吕德生, 孙煜超, 王嘉忆. 虚拟场景中图形化交互组件的深度冲突缓解研究[J]. 浙江大学学报(理学版), 2020, 47(5): 564-571.
[3] 李君轶, 任涛, 陆路正. 游客情感计算的文本大数据挖掘方法比较研究[J]. 浙江大学学报(理学版), 2020, 47(4): 507-520.
[4] 宋建文, 罗江林, 王博, 张倩, 王献悦. 基于故事情景链语法的偶动画短片分析与建模[J]. 浙江大学学报(理学版), 2020, 47(3): 284-296.
[5] 吕欣, 程雨夏. 基于语义相似度与XGBoost算法的英语作文智能评价框架研究[J]. 浙江大学学报(理学版), 2020, 47(3): 329-336.
[6] 潘志庚, 袁庆曙, 陈胜男, 张明敏. 文化遗产数字化展示与互动技术研究与进展[J]. 浙江大学学报(理学版), 2020, 47(3): 261-273.
[7] 陈佳舟, 王宇航, MohammedAmal Ahmed Hasan, 黄可妤, 卢周扬, 彭群生. 基于图像的二维剪纸自动生成方法[J]. 浙江大学学报(理学版), 2020, 47(3): 274-283.
[8] 焦清局, 刘永革, 仇利萍, 金园园, 熊晶, 刘国英, 高峰. 网络驱动的未识甲骨字特性及场景语义预测[J]. 浙江大学学报(理学版), 2020, 47(2): 142-150.
[9] 张迪, 查东东, 刘华勇. 三次DP曲线定义区间的扩展及其形状优化[J]. 浙江大学学报(理学版), 2020, 47(2): 178-190.
[10] 卢家品, 罗月童, 黄兆嵩, 张延孔, 陈为. 基于排名学习和多源信息的地图匹配方法[J]. 浙江大学学报(理学版), 2020, 47(1): 27-35.
[11] 赵喆, 张天野, 黄彦浩, 郑文庭, 陈为. 面向仿真数据的电网运行方式可视分析[J]. 浙江大学学报(理学版), 2020, 47(1): 36-44.
[12] 刘一璟, 张旭斌, 张建伟, 周哲磊, 冯元力, 陈为. DenseNet-centercrop: 一个用于肺结节分类的卷积网络[J]. 浙江大学学报(理学版), 2020, 47(1): 20-26.
[13] 李军成, 李兵, 易叶青. 保参数方向的形状可调过渡曲线与曲面[J]. 浙江大学学报(理学版), 2019, 46(4): 422-430.
[14] 李丽, 高若婉, 梅树立, 赵海英. 基于Shannon-Cosine小波精细积分法的壁画降噪修复方法[J]. 浙江大学学报(理学版), 2019, 46(3): 279-287.
[15] 郑锐, 钱文华, 徐丹, 普园媛. 基于卷积神经网络的刺绣风格数字合成[J]. 浙江大学学报(理学版), 2019, 46(3): 270-278.