Conformations of ring polymer chain in nanocomposites
SONG Qingliang1, WANG Xianghong1,2
1. College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, China;
2. Department of Electrical and Electronic Engineering, Wenzhou Vocational & Technical College, Wenzhou 325035, Zhejiang Province, China
Abstract:The conformations of ring polymer chain and the aggregation behavior of nanoparticle in nanocomposites are investigated by coarse-grained molecular dynamics.Nanoparticles exhibit three dispersion-aggregation states:contact aggregation,dispersion and tele bridging aggregation,which are consistent with the theoretical results.By altering the stiffness of ring chain,three typical conformations are obtained:middle adsorption,saddle-shaped adsorption and obit-shaped adsorption.The increasing of ring chain stiffness is benefit for the dispersion of nanoparticle in nanocomposites.
宋青亮, 王向红. 纳米复合体系中环形高分子链的构型[J]. 浙江大学学报(理学版), 2018, 45(5): 562-568.
SONG Qingliang, WANG Xianghong. Conformations of ring polymer chain in nanocomposites. Journal of ZheJIang University(Science Edition), 2018, 45(5): 562-568.
[1] USUKI A, KOJIMA Y, KAWASUMI M, et al. Synthesis of nylon 6-clay hybrid[J]. Journal of Materials Research, 1993(8):1179-1184.
[2] DELCAMBRE S P, RIGGLEMAN R A, DE PABLO J J, et al. Mechanical properties of antiplasticized polymer nanostructures[J]. Soft Matter, 2010(6):2475-2483.
[3] ZHU J, UHL F M, MORGAN A B, et al. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chem Mater, 2001, 13:4649-4654.
[4] CASERI W. Nanocomposites of polymers and metals or semiconductors:Historical background and optical properties[J]. Macromol Rapid Commun, 2000, 21:705-722.
[5] ZUEV V V, IVANOVA Y G. Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers[J]. Polym Eng Sci, 2012, 52:1206-1211.
[6] GREGOR H, THOMAS A V, GERT H. Universal properties in the dynamical deformation of filled rubbers[J]. Phys Condens Matter, 1996(8):409-412.
[7] MACKAY M E, DAO T T, TUTEJA A, et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity[J]. Nat Mater, 2003(2):762-766.
[8] SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258:1474-1476.
[9] MACKAY M E, TUTEJA A, DUXBURY P M, et al. General strategies for nanoparticle dispersion[J]. Science, 2006, 311:1740-1743.
[10] NAKATANI A I, CHEN W, SCHMIDT R, et al. Chain dimensions in polysilicate-filled poly(dimethyl siloxane)[J]. Int J Thermophys, 2001, 42:3713-3722.
[11] HOOPER J B, SCHWEIZER K S. Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures[J]. Macromolecules, 2005, 38:8858-8869.
[12] HOOPER J B, SCHWEIZER K S. Theory of phase separation in polymer nanocomposites[J]. Macromolecules, 2006, 39:5133-5142.
[13] LIU J, GAO Y Y, CAO D P, et al. Nanoparticle dispersion and aggregation in polymer nanocomposites:Insights from molecular dynamics simulation[J]. Langmuir, 2011, 27:7926-7933.
[14] PATRA T K, SINGH J K. Coarse-grain molecular dynamics simulations of nanoparticle-polymer melt:Dispersion vs.agglomeration[J]. J Chem Phys, 2013, 138(14):144901.
[15] FENG Y C, ZOU H, TIAN M, et al. Relationship between dispersion and conductivity of polymer nanocomposites:A molecular dynamics study[J]. J Phys Chem B, 2012, 116:13081-13088.
[16] KAPNISTOS M, LANG M,VLASSOPOULOS D, et al. Unexpected power-law stress relaxation of entangled ring polymers[J]. Nature Materials, 2008, 7(12):997-1002.
[17] ALIM K, FREY E. Shapes of semiflexible polymer rings[J]. Physical Review Letters, 2007, 99:198102.
[18] DRUBE F, ALIM K, WITZ G, et al. Excluded volume effects on semiflexible ring polymers[J]. Nano Letters, 2010, 10:1445-1449.
[19] LOUIS A A, BOLHUIS P G, HANSEN J P, et al. Can polymer coils be modeled as "soft colloids"?[J]. Phys Rev Lett, 2000, 85:2522-2525.
[20] KRAKOVIACK V, HANSEN J P, LOUIS A A. Influence of solvent quality on effective pair potentials between polymers in solution[J]. Phys Rev E:Stat Phys, Plasmas, Fluids, Relat Interdiscip Top, 2003, 67:041801.
[21] NARROS A, MORENO A J, LIKOS C N. Influence of topology on effective potentials:Coarse-graining ring polymers[J]. Soft Matter, 2010(6):2435-2441.
[22] BERNABEI M, BACOVA P, MORENO A J, et al. Fluids of semiflexible ring polymers:Effective potentials and clustering[J]. Soft Matter, 2013, 9:1287-1300.
[23] LI C Y, LUO M B, HUANG J H, et al. Equilibrium and dynamical properties of polymer chains in random medium filled with randomly distributed nano-sized fillers[J]. Phys Chem Chem Phys, 2015, 17:31877-31886.
[24] HUANG X W, PENG Y, LUO M B, et al. A study on the diffusivity of polymers in crowded environments with periodically distributed nanoparticles[J]. Phys Chem Chem Phys, 2017, 19:29975-29983.
[25] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117:1-19.
[26] GREST G S, KREMER K. Molecular dynamics simulation for polymers in the presence of a heat bath[J]. Phys Rev A:At, Mol, Opt Phys, 1986, 33:3628-3631.
[27] TERMONIA Y. Monte-Carlo modeling of dense polymer melts near nanoparticles[J]. Polymer, 2009, 50:1062-1066.
[28] GAO Y Y, LIU J, SHEN J X, et al. Influence of various nanoparticle shapes on the interfacial chain mobility:A molecular dynamics simulation[J]. Phys Chem Chem Phys, 2014, 16:21372-21382.
[29] ZHOU X L, JIANG Y W, DENG Z Y, et al. Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts[J]. Scientific Reports, 2017, 7:44325.
[30] ZHOU X L, JIANG Y W, CHEN J M, et al. Size-dependent nanoparticle dynamics in semiflexible ring polymer nanocomposites[J]. Polymer, 2017, 13:1243-1251.
[31] DENG Z Y, JIANG Y W, HE L L, et al. Aggregation-dispersion transition for nanoparticles in semiflexible ring polymer nanocomposite melts[J]. The Journal of Physical Chemistry B, 2016, 120:11574-11581.