Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (5): 562-568    DOI: 10.3785/j.issn.1008-9497.2018.05.008
物理学     
纳米复合体系中环形高分子链的构型
宋青亮1, 王向红1,2
1. 温州大学 物理与电子信息工程学院, 浙江 温州 325035;
2. 温州职业技术学院 电气电子工程系, 浙江 温州 325035
Conformations of ring polymer chain in nanocomposites
SONG Qingliang1, WANG Xianghong1,2
1. College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, China;
2. Department of Electrical and Electronic Engineering, Wenzhou Vocational & Technical College, Wenzhou 325035, Zhejiang Province, China
 全文: PDF(12114 KB)   HTML  
摘要: 采用分子动力学模拟方法对纳米复合体系中环形高分子链的构型及纳米粒子的集聚行为进行了研究.在不同纳米粒子/高分子链吸附能作用下,复合体系中纳米粒子表现出3种集聚行为:直接接触集聚、均匀分散以及高分子与纳米粒子间的桥接集聚.同时考虑了环形高分子链的刚性强度,得到了环形高分子链的3个构型:中间吸附、马鞍型吸附和轨道绕行型吸附.研究发现,增强环形高分子链的刚性将有助于促进纳米复合体系中纳米粒子间的分散.
关键词: 分子动力学环形高分子构型分散与集聚    
Abstract: The conformations of ring polymer chain and the aggregation behavior of nanoparticle in nanocomposites are investigated by coarse-grained molecular dynamics.Nanoparticles exhibit three dispersion-aggregation states:contact aggregation,dispersion and tele bridging aggregation,which are consistent with the theoretical results.By altering the stiffness of ring chain,three typical conformations are obtained:middle adsorption,saddle-shaped adsorption and obit-shaped adsorption.The increasing of ring chain stiffness is benefit for the dispersion of nanoparticle in nanocomposites.
Key words: molecular dynamics    ring polymer    conformation    dispersion-aggregation
收稿日期: 2018-01-31 出版日期: 2018-09-12
CLC:  O561  
基金资助: 浙江省自然科学基金资助项目(LZ13F020003);国家自然科学基金资助项目(21674082,21474076,11875205).
通讯作者: 王向红,ORCID:http://orcid.org/0000-0003-3165-814X,E-mail:wxh@wzvtc.edu.cn     E-mail: wxh@wzvtc.edu.cn
作者简介: 宋青亮(1991-),ORCID:http://orcid.org/0000-0003-4219-1426,男,硕士,主要从事高分子物理研究,E-mail:2540779635@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋青亮
王向红

引用本文:

宋青亮, 王向红. 纳米复合体系中环形高分子链的构型[J]. 浙江大学学报(理学版), 2018, 45(5): 562-568.

SONG Qingliang, WANG Xianghong. Conformations of ring polymer chain in nanocomposites. Journal of ZheJIang University(Science Edition), 2018, 45(5): 562-568.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.05.008        https://www.zjujournals.com/sci/CN/Y2018/V45/I5/562

[1] USUKI A, KOJIMA Y, KAWASUMI M, et al. Synthesis of nylon 6-clay hybrid[J]. Journal of Materials Research, 1993(8):1179-1184.
[2] DELCAMBRE S P, RIGGLEMAN R A, DE PABLO J J, et al. Mechanical properties of antiplasticized polymer nanostructures[J]. Soft Matter, 2010(6):2475-2483.
[3] ZHU J, UHL F M, MORGAN A B, et al. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chem Mater, 2001, 13:4649-4654.
[4] CASERI W. Nanocomposites of polymers and metals or semiconductors:Historical background and optical properties[J]. Macromol Rapid Commun, 2000, 21:705-722.
[5] ZUEV V V, IVANOVA Y G. Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers[J]. Polym Eng Sci, 2012, 52:1206-1211.
[6] GREGOR H, THOMAS A V, GERT H. Universal properties in the dynamical deformation of filled rubbers[J]. Phys Condens Matter, 1996(8):409-412.
[7] MACKAY M E, DAO T T, TUTEJA A, et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity[J]. Nat Mater, 2003(2):762-766.
[8] SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258:1474-1476.
[9] MACKAY M E, TUTEJA A, DUXBURY P M, et al. General strategies for nanoparticle dispersion[J]. Science, 2006, 311:1740-1743.
[10] NAKATANI A I, CHEN W, SCHMIDT R, et al. Chain dimensions in polysilicate-filled poly(dimethyl siloxane)[J]. Int J Thermophys, 2001, 42:3713-3722.
[11] HOOPER J B, SCHWEIZER K S. Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures[J]. Macromolecules, 2005, 38:8858-8869.
[12] HOOPER J B, SCHWEIZER K S. Theory of phase separation in polymer nanocomposites[J]. Macromolecules, 2006, 39:5133-5142.
[13] LIU J, GAO Y Y, CAO D P, et al. Nanoparticle dispersion and aggregation in polymer nanocomposites:Insights from molecular dynamics simulation[J]. Langmuir, 2011, 27:7926-7933.
[14] PATRA T K, SINGH J K. Coarse-grain molecular dynamics simulations of nanoparticle-polymer melt:Dispersion vs.agglomeration[J]. J Chem Phys, 2013, 138(14):144901.
[15] FENG Y C, ZOU H, TIAN M, et al. Relationship between dispersion and conductivity of polymer nanocomposites:A molecular dynamics study[J]. J Phys Chem B, 2012, 116:13081-13088.
[16] KAPNISTOS M, LANG M,VLASSOPOULOS D, et al. Unexpected power-law stress relaxation of entangled ring polymers[J]. Nature Materials, 2008, 7(12):997-1002.
[17] ALIM K, FREY E. Shapes of semiflexible polymer rings[J]. Physical Review Letters, 2007, 99:198102.
[18] DRUBE F, ALIM K, WITZ G, et al. Excluded volume effects on semiflexible ring polymers[J]. Nano Letters, 2010, 10:1445-1449.
[19] LOUIS A A, BOLHUIS P G, HANSEN J P, et al. Can polymer coils be modeled as "soft colloids"?[J]. Phys Rev Lett, 2000, 85:2522-2525.
[20] KRAKOVIACK V, HANSEN J P, LOUIS A A. Influence of solvent quality on effective pair potentials between polymers in solution[J]. Phys Rev E:Stat Phys, Plasmas, Fluids, Relat Interdiscip Top, 2003, 67:041801.
[21] NARROS A, MORENO A J, LIKOS C N. Influence of topology on effective potentials:Coarse-graining ring polymers[J]. Soft Matter, 2010(6):2435-2441.
[22] BERNABEI M, BACOVA P, MORENO A J, et al. Fluids of semiflexible ring polymers:Effective potentials and clustering[J]. Soft Matter, 2013, 9:1287-1300.
[23] LI C Y, LUO M B, HUANG J H, et al. Equilibrium and dynamical properties of polymer chains in random medium filled with randomly distributed nano-sized fillers[J]. Phys Chem Chem Phys, 2015, 17:31877-31886.
[24] HUANG X W, PENG Y, LUO M B, et al. A study on the diffusivity of polymers in crowded environments with periodically distributed nanoparticles[J]. Phys Chem Chem Phys, 2017, 19:29975-29983.
[25] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117:1-19.
[26] GREST G S, KREMER K. Molecular dynamics simulation for polymers in the presence of a heat bath[J]. Phys Rev A:At, Mol, Opt Phys, 1986, 33:3628-3631.
[27] TERMONIA Y. Monte-Carlo modeling of dense polymer melts near nanoparticles[J]. Polymer, 2009, 50:1062-1066.
[28] GAO Y Y, LIU J, SHEN J X, et al. Influence of various nanoparticle shapes on the interfacial chain mobility:A molecular dynamics simulation[J]. Phys Chem Chem Phys, 2014, 16:21372-21382.
[29] ZHOU X L, JIANG Y W, DENG Z Y, et al. Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts[J]. Scientific Reports, 2017, 7:44325.
[30] ZHOU X L, JIANG Y W, CHEN J M, et al. Size-dependent nanoparticle dynamics in semiflexible ring polymer nanocomposites[J]. Polymer, 2017, 13:1243-1251.
[1] 龚书楠,胡婷媛,谢文惠,何林李,王向红. 二元环/线高分子在纳米棒界面区域的吸附行为[J]. 浙江大学学报(理学版), 2022, 49(6): 698-705.
[2] 李丰庆, 何林李. 链刚性和剪切场对纳米棒在纳米复合体系中分布和取向的影响[J]. 浙江大学学报(理学版), 2021, 48(6): 694-699.
[3] 汪冒君, 宣南霞, 吴 军. 乙酰乳酸合成酶与抑制剂ZJ0777及CIE的分子对接和分子动力学模拟[J]. 浙江大学学报(理学版), 2015, 42(6): 709-713.
[4] 李江波,林瑞森. 喹诺酮模型化合物:2-吡酮酸和4-吡酮酸分子的ab initio理论研究[J]. 浙江大学学报(理学版), 2000, 27(5): 521-524.
[5] 王向红,章林溪,林振成,郑亦庄. 受约高分子链构型的统计性质[J]. 浙江大学学报(理学版), 1999, 26(3): 60-64.