Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (4): 429-435    DOI: 10.3785/j.issn.1008-9497.2018.04.010
物理学     
Cr掺杂LiZnAs稀磁半导体的第一性原理研究
张云丽1, 朱自强1, 李晓川1, 刘奎立1, 巫洪章2, 周小东3
1. 周口师范学院 物理与电信工程学院, 河南 周口 466001;
2. 周口师范学院 稀土功能材料及应用实验室, 河南 周口 466001;
3. 周口师范学院 机械与电气工程学院, 河南 周口 466001
The study of Cr doped LiZnAs diluted semiconductor based on the first-principles
ZHANG Yunli1, ZHU Ziqiang1, LI Xiaochuan1, LIU Kuili1, WU Hongzhang2, ZHOU Xiaodong3
1. School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, Henan Province, China;
2. The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan Province, China;
3. School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan Province, China
 全文: PDF(8448 KB)   HTML  
摘要: 采用第一性原理研究了Li过量情况下Cr掺杂LiZnAs体系(Li1.1(Zn1-xCrx)As)(x=0.1) 的稳定构型、磁性来源以及电子结构.首先,通过比较不同构型下Cr掺杂LiZnAs稀磁半导体体系得到稳定构型的能量,发现一定的Li过量、Cr掺杂浓度下,当掺杂的Cr原子之间的初始距离一定时,过剩的Li空位之间的距离对其构型稳定性有较大影响;其次,分析了Cr掺杂LiZnAs的磁性来源,发现其磁性主要来源于Cr原子的3d轨道;最后,研究了Cr掺杂LiZnAs体系的电子结构,结果显示Cr掺杂LiZnAs体系的电子结构具有稀磁半导体特性.
关键词: Cr掺杂LiZnAs第一性原理磁性特征电子结构    
Abstract: In order to find the stable configuration, origin of magnetism and electronic structure of Cr doped LiZnAs with excess Li system (Li1.1(Zn1-xCrx)As) (x=0.1), the energies of various configurations, the magnetic moment and the total and partial wave electronic density of states on Li1.1(Zn1-xCrx)As (x=0.1) system have been studied based on the first-principles. The stable configuration is found by comparing the energies of various configurations on Li1.1(Zn1-xCrx)As (x=0.1) system. The calculated results also show that when the excess Li and doped Cr are certain, the initial distance between Cr atoms is also certain, the space distance between excess Li has obvious influence on the energies of configurations of (Li1.1(Zn1-xCrx)As) (x=0.1) system, hence on the stability of (Li1.1(Zn1-xCrx)As) (x=0.1) configuration. Secondly, it is found that the magnetic moment of (Li1.1(Zn1-xCrx)As) (x=0.1) system mainly comes from the 3d orbitals of Cr atom according to the calculated results of the total and atom magnetic moment of (Li1.1(Zn1-xCrx)As) (x=0.1) system. Finally, Cr doped LiZnAs is found to have characteristics of the diluted magnetic semiconductor by the study on the electronic structure of Cr doped LiZnAs system.
Key words: Cr doped LiZnAs system    the first principles    magnetic characteristics    the electronic structure
收稿日期: 2017-07-03 出版日期: 2018-07-12
CLC:  O411.3  
基金资助: 国家自然科学基金资助项目(11405280);河南省科技攻关计划项目(162102210129);周口师范学院2016年度科研创新基金资助项目(zknuA201603).
作者简介: 张云丽(1982-),ORCID:http://orcid.org/0000-0003-4027-077X,女,博士,讲师,主要从事凝聚态理论和材料计算研究,E-mail:zhangyunli0558@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张云丽
朱自强
李晓川
刘奎立
巫洪章
周小东

引用本文:

张云丽, 朱自强, 李晓川, 刘奎立, 巫洪章, 周小东. Cr掺杂LiZnAs稀磁半导体的第一性原理研究[J]. 浙江大学学报(理学版), 2018, 45(4): 429-435.

ZHANG Yunli, ZHU Ziqiang, LI Xiaochuan, LIU Kuili, WU Hongzhang, ZHOU Xiaodong. The study of Cr doped LiZnAs diluted semiconductor based on the first-principles. Journal of Zhejiang University (Science Edition), 2018, 45(4): 429-435.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.04.010        https://www.zjujournals.com/sci/CN/Y2018/V45/I4/429

[1] 蔡淑珍,秦向东,段平光,等.ZnO基稀磁半导体的研究进展[J]. 河北大学学报(自然科学版), 2007, 27(3):332-336. CAI S Z, QIN X D, DUAN P G, et al.Research development of ZnO DMS[J]. Journal of Hebei University (Natural Science Edition), 2007, 27(3):332-336.
[2] BEDNARSKI H, CISOWSKI J, PORTAL J C. Pressure dependence of magnetization in diluted magnetic semiconductors[J]. Journal of Magnetism and Magnetic Materials, 2003, 261(1/2):172-177.
[3] MATSUDA Y H, MIURA N, KURODA S, et al. Possible s-d hybridization effect on the cyclotron mass in Ⅱ-VI diluted magnetic semiconductors at megagauss fields[J]. Physica B:Condensed Matter, 2001, 294/295:467-470.
[4] 刘学超, 施尔畏, 张华伟, 等. ZnO基稀磁半导体薄膜材料研究进展[J]. 无机材料学报, 2006, 21(3):513-520. LIU X C, SHI E W, ZHANG H W, et al. Recent progress in developing ZnO-based thin films of diluted magnetic semiconductors[J]. Journal of Inorganic Materials, 2006, 21(3):513-520.
[5] MAŠEK J, KUDRNOVSKY' J, MÁCA F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn, Mn)As[J]. Physical Review Letters, 2007, 98(6):067202.
[6] DENG Z, JIN C Q, LIU Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I-Ⅱ-V semiconductor[J]. Nature Communications, 2011, 2(2):73-86.
[7] SATO K, FUJIMOTO S, FUJⅡ H, et al. Computational materials design of filled tetrahedral compound magnetic semiconductors[J]. Physica B:Condensed Matter, 2012, 407(17):2950-2593.
[8] ZHAO K, DENG Z, WANG X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors[J]. Nature Communications, 2013(4):Article number 1442.
[9] DING C, MAN H Y, QIN C, et al. (La1-xBax)(Zn1-xMnx)AsO:A two-dimensional 1111-type diluted magnetic semiconductor in bulk form[J]. Physical Review B, 2013, 88(4):3239-3246.
[10] WANG Q, MAN H Y, DING C, et al. Li1.1(Zn1-xCrx)As:Cr doped I-Ⅱ-V diluted magnetic semiconductors in bulk form[J]. Journal of Applied Physics, 2014, 115(8):083917.
[11] CHEN B J, ZHAO K, DENG Z, et al. (Sr,Na)(Zn,Mn)2As2:A diluted ferromagnetic semiconductor with the hexagonal CaAl2Si2 type structure[J]. Physical Review B, 2014, 90(23):155202.
[12] ZHAO K, CHEN B J, DENG Z, et al. (Ca,Na)(Zn,Mn)2As2:A new spin & charge doping decoupled diluted ferromagnetic semiconductor with hexagonal CaAl2Si2 structure[J]. Journal of Applied Physics, 2014, 116(16):163906.
[13] YANG X J, CHEN Q, LI Y P, et al. Sr0.9K0.1Zn1.8Mn0.2As2:A ferromagnetic semiconductor with colossal magnetoresistance[J]. Europhysics Letters, 2014, 107(6):67007.
[14] MAN H Y, QIN C, DING C, et al. (Sr3La2O5)(Zn1-xMnx)2As2:A bulk form diluted magnetic semiconductor isostructural to the "32522" Fe-based superconductors[J]. Europhysics Letters, 2014, 105(6):67004. arXiv:1403.3483.
[15] WANG M X, ZHANG Z H, HE M, et al. Investigations on magnetic properties of Cr-doped LiZnAs by first-principle calculations[J]. Journal of Superconductivity and Novel Magnetism, 2017, 30(6):1514-1549.
[16] TAO H L, LIN L, ZHANG Z H, et al. Electronic and magnetic properties of a new diluted magnetic semiconductor Li(Zn, TM)As (TM:V, Cr, Mn, Fe, Co and Ni)[J]. Chemical Physics Letters, 2016, 657:39-43.
[17] KRESSE G, FURTHMVLLER J. Efficient iterative schemes for Abinitio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
[18] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979.
[19] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B,1999, 59(3):1758-1775.
[20] MONKHORST H J, PACK J D. Special points for Brillonin-zone integrations[J]. Physical Review B,1976, 13(12):5188-5192.
[21] KURIYAMA K, KATO T, KAWADA K. Growth and photoluminescence properties of the filled tetrahedral semiconductor LiZnAs[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4):631-635.
[22] BACEWICZ R, CISZEK T F. Preparation and characterization of some AIBⅡCV type semiconductors[J].Applied Physics Letters, 1988, 52(14):1150-1151.
No related articles found!