Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (3): 261-271    DOI: 10.3785/j.issn.1008-9497.2018.03.001
现代优化理论与算法专栏     
基于动态分级和邻域反向学习的改进粒子群算法
任燕芝
西安电子科技大学 数学与统计学院, 陕西 西安 710126
An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning
REN Yanzhi
School of Mathematics and Statistics, Xidian University, Xi'an 710126, China
 全文: PDF(7101 KB)   HTML  
摘要: 针对粒子群算法容易陷入局部最优解的问题,提出了一种基于动态分级和邻域反向学习的改进粒子群算法.该算法通过构建动态分级机制,将种群中的粒子动态地划分成3个等级,对不同等级内的粒子采取不同的扰动行为,使得粒子在增强种群多样性的同时保持向全局最优方向进化;采用粒子智能更新方式,提高了粒子的搜索能力;引入动态邻域反向学习点建立全局搜索策略,促使种群快速寻优.最后,利用多种典型测试函数对该算法进行仿真实验,结果表明,与其他几种优化算法相比,本算法具有较好的收敛性和稳定性.
关键词: 粒子群算法动态分级机制邻域反向学习全局搜索策略    
Abstract: In order to solve the problem that the particle swarm optimization algorithm is likely to fall into local optimum, an improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning (DSNRPSO) is proposed. By setting up a dynamic segmentation mechanism, the algorithm divides the particles in the population into three grades, then employs different perturbation strategies for the particles in different grades, so that the particles maintain the evolution to the global optimal direction while the diversity of the population is enhanced. Furthermore, it adopts the method of particle intelligent updating to promote the search ability of particles, and introduces the dynamic neighborhood reverse point enabling a global search to improve the particle searching speed. The preliminary results show that the proposed algorithm has better convergence and stability than several other kinds of optimization algorithms.
Key words: particle swarm algorithm    dynamic segmentation mechanism    neighborhood reverse learning    global search strategy
收稿日期: 2017-08-24 出版日期: 2018-03-15
CLC:  TP18  
基金资助: 国家自然科学基金资助项目(61373174).
作者简介: 任燕芝(1992-),ORCID:http://orcid.org/0000-0003-1109-8050,女,硕士,主要从事智能优化算法、最优化理论及其应用研究,E-mail:yzren@stu.xidian.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任燕芝

引用本文:

任燕芝. 基于动态分级和邻域反向学习的改进粒子群算法[J]. 浙江大学学报(理学版), 2018, 45(3): 261-271.

REN Yanzhi. An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning. Journal of Zhejiang University (Science Edition), 2018, 45(3): 261-271.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.03.001        https://www.zjujournals.com/sci/CN/Y2018/V45/I3/261

[1] 王凌.智能优化算法及其应用[M]. 北京:清华大学出版社,2001:1-2. WANG L. Intelligent Optimization Algorithm and Its Application[M]. Beijing:Tsinghua University Press, 2001:1-2.
[2] KENNEDYJ, EBERHART R C. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Piscataway:IEEE,1995:1942-1948.
[3] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm[J].Journal of Global Optimization, 2007, 39(3):459-47.
[4] 余胜威, 曹中清.基于人群搜索算法的PID控制器参数优化[J]. 计算机仿真,2014, 31(9):347-350. YU S W, CAO Z Q. Optimization parameters of PID controller parameters based on seeker optimization algorithm[J]. Computer Simulation, 2014, 31(9):347-350.
[5] YANG X, GANDOMI A H. Bat algorithm:A nove approach for global engineering optimization[J].Engineering Computations, 2012, 29(5):464-4.
[6] YANG X S, DEB S. Cuckoo search via levy flights[C]//Proceedings of the World Congress on Nature and Biologically Inspired Computing. Coimbatore:Nature & Biologically Inspired Computing, 2010. DOI:10.1109/NABIC. 2009.5393690.
[7] RIGET J, VESTERSTRØM J S. A diversity-guided particle swarm optimizer-the ARPSO[J/OL]. ResearchGate. Https://www.researchgate.net/publication/228582468_a_diversity-guide_particle_swarm_optimizer-the_arpso,[2002-01].
[8] WANG H, SUN H, LI C, et al. Diversity enhanced particle swarm optimization with neighborhood search[J]. Information Sciences, 2013, 223(2):119-135.
[9] KENNEDY J. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance[C]//Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Piscataway:IEEE Xplore, 1999:1931-1938.
[10] DAS S, ABRAHAM A, CHAKRABORTY U K, et al. Differential evolution using a neighborhood-based mutation operator[J].IEEE Transactions on Evolutionary Computation, 2009, 13(3):526-553.
[11] TIZHOOSH H R. Opposition-based learning:A new scheme for machine intelligence[C]//Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on. Washington:IEEE Computer Society, 2005(1):695-701.
[12] 魏文红, 王甲海, 陶铭,等. 基于泛化反向学习的多目标约束差分进化算法[J]. 计算机研究与发展, 2016, 53(6):1410-1421. WEI W H, WANG J H, TAO M, et al. Multi-objective constrained differential evolution using generalized opposition based learning[J]. Journal of Computer Research and Development, 2016, 53(6):1410-1421.
[13] WANG H, WU Z, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition based learning[J]. Information Sciences, 2011, 181(20):4699-4714.
[14] ZHAO S Z, SUGANTHAN P N, DAS S. Self-adaptive differential evolution with modified multi-trajectory search for CEC'2010 large scale optimization[C]//Swarm, Evolutionary, and Memetic Computing. Heidelberg:Springer, 2010:1-10.
[15] LIAO T, STUTZLE T. Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization[J].Evolutionary Computation, 2013, 2013:1938-1944.
[16] DANG C T, WU Z, WANG H.A new approach of diversity enhanced particle swarm optimization with neighborhood search and adaptive mutation[C]//Neural Information Processing. Heidelberg:Springer International Publishing, 2014:143-150.
[17] GAO W F, HUANG L L, LIU S Y, et al. Artificial bee colony algorithm with multiple search strategies[J]. Applied Mathematics & Computation, 2015, 271(C):269-287.
[18] GAO W F, LIU S Y, HUANG L L. Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique[J].Communications in Nonlinear Science & Numerical Simulation, 2012, 17(11):4316-4327.
[1] 韩萌. 耗散结构和差分变异混合的鸡群算法[J]. 浙江大学学报(理学版), 2018, 45(3): 272-283.
[2] 郭立婷. 基于自适应和变游走方向的改进狼群算法[J]. 浙江大学学报(理学版), 2018, 45(3): 284-293.
[3] 张恺, 王应明. 考虑多角度效用的应急案例调整方法[J]. 浙江大学学报(理学版), 2017, 44(3): 314-321.
[4] 索春凤, 王贵君. 折线Mamdnai模糊系统及其权值参数的萤火虫优化算法[J]. 浙江大学学报(理学版), 2016, 43(2): 149-155.
[5] 林耿, 关健. 自适应memetic算法求解集合覆盖问题[J]. 浙江大学学报(理学版), 2016, 43(2): 168-174.
[6] 郭伟强. 用人工神经网络方法解析色谱重叠峰[J]. 浙江大学学报(理学版), 1998, 25(3): 62-65.