Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (2): 205-218    DOI: 10.3785/j.issn.1008-9497.2018.02.011
地球科学     
我国江淮和黄淮地区强对流过程的基本特征
周一民, 张文滨, 朱佩君
浙江大学 地球科学学院, 浙江 杭州 310027
General characteristics of the convection weather processes over Jianghuai and Huanghuai region
ZHOU Yimin, ZHANG Wenbin, ZHU Peijun
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
 全文: PDF(40311 KB)   HTML  
摘要: 中国江淮和黄淮地区是强对流天气多发区域,利用2010-2012年(4-10月)常规观测资料和再分析资料,对江淮和黄淮地区(30°N~37°N,110°E~122°E)发生的418个强对流天气过程进行了统计分析,得到该地区强对流发生的时空特征、典型环境背景以及对流关键参数的统计特征.统计发现,江淮和黄淮地区强对流天气主要发生在6-9月,8月最多,呈单峰型.空间上,江淮和黄淮地区有明显的3块强对流多发区域,分别是山东泰山周边地区、东部平原地区、大别山和黄山一带,其中发生在东部平原区域的强对流过程所占比例最高,达到了35.3%.从日变化来看,强对流主要发生在15:00-21:00(LST,下同),其次是06:00-09:00,呈双峰型,并且在空间走势上从早至晚呈自西北向东南的发展规律.根据500 hPa形势场将个例分成低槽型、副高型、冷涡型、台风型4大类,其中低槽型284例,副高型101例,冷涡型16例,台风型17例.由探空数据统计发现,副高型水汽更多集中在边界层低层,而台风型水汽更多分布在深厚的对流层中,低槽型水汽条件适中,冷涡型最小且抬升凝结高度最高;副高型最不稳定,低槽型适中,冷涡型不稳定度最低.通过与已有研究对比,本研究区域的强对流过程潜在不稳定度较小,但具有较湿的环境场.
关键词: 强对流天气过程统计分析日变化天气形势关键参数    
Abstract: There is a high frequency of severe convective weather occurring in Jianghuai and Huanghuai region of China. Based on the conventional observation data and NCEP reanalysis data from 2010 to 2012 (April to October), the spatial distributions and the temporal variability, the typical synoptic weather environments and the statistical characteristics of key parameters of 418 convective events over Jianghuai and Huanghuai region (30°N-37°N,110°E-122°E) are investigated. Results show that severe convective events mainly occur from June to September with a single-peak in August. Three areas are identified as high frequency of occurrence of severe convective events. The most favorable area of the severe convective events is the plain of East China with an occurrence frequency of 35.3%. The other two areas are around Dabie Mountain and Huangshan Mountain and near the southern boundary of Tai Mountain, respectively. Their diurnal variations show a major peak in the late afternoon(15:00-21:00, LST)and a second peak in the morning (06:00-09:00,LST). The largest frequency region of severe convections occurs shifts gradually from the northwest to the southeast in Jianghuai and Huanghuai region from morning to evening. The related environmental conditions are classified into four major groups based on their 500 hPa synoptic weather maps:Trough (TR,284 cases), subtropical high (STH,101 cases),cold vortex (CV,16 cases),tropical cyclone (TC,17 cases). The composite of rawinsonde analyses show that the TC pattern features the largest moisture in the troposphere while the STH is associated with rich moisture in the lower layer. The TR has moderate moisture whereas the CV is the driest with the lowest lifting condensation level pressure (LCLP)comparatively. From the condition of instability point of view, the STH has the largest unstable condition while the TR is moderate and the CV has the lowest unstable condition comparatively. Compared to the previous studies, the severe convection weather processes in the area investigated in the current study tend to form in a moister environment and with a background of comparable moderate unstability.
Key words: severe convection weather process    statistical analysis    diurnal variation    synoptic patterns    key parameters
收稿日期: 2017-01-06 出版日期: 2018-03-08
CLC:  P445  
基金资助: 国家973项目(2013CB430104);国家自然科学基金资助项目(41375051,41475039).
通讯作者: 朱佩君,ORCID:http://orcid.org/0000-0002-0296-7456,E-mail:zhupj@zju.edu.cn     E-mail: zhupj@zju.edu.cn
作者简介: 周一民(1986-),ORCID:http://orcid.org/0000-0002-7642-2870,男,硕士,主要从事中尺度研究,E-mail:21238026@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周一民
张文滨
朱佩君

引用本文:

周一民, 张文滨, 朱佩君. 我国江淮和黄淮地区强对流过程的基本特征[J]. 浙江大学学报(理学版), 2018, 45(2): 205-218.

ZHOU Yimin, ZHANG Wenbin, ZHU Peijun. General characteristics of the convection weather processes over Jianghuai and Huanghuai region. Journal of ZheJIang University(Science Edition), 2018, 45(2): 205-218.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.02.011        https://www.zjujournals.com/sci/CN/Y2018/V45/I2/205

[1] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理与方法[M].北京:气象出版社,2000:400-461. ZHU Q G, LIN J R, SHOU S W, et al. Principle and Method of Synoptic Meteorology[M]. Beijing:China Meteorological Press, 2000:400-461.
[2] MADDOX R A, CHAPPELL C F, HOXIT L R. Synoptic and meso-alpha scale aspects of flash flood events[J]. Bulletin of the American Meteorological Society,1979, 60(2):115-123.
[3] DOSWELL C A I. Flash flood forecasting:An ingredients-based methodology[J]. Weather & Forecasting, 1996, 11(4):560-581.
[4] SCHUMACHER R S, JOHNSON R H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Monthly Weather Review, 2005, 133(4):961-976.
[5] DOSWELL C A I. Severe convective storms:An overview[J]. Meteorological Monographs, 2001, 28(50):257-308.
[6] GEERTS B. Mesoscale convective systems in the southeast United States during 199495:A survey[J]. Weather & Forecasting,1998,13(3):860-869.
[7] ZHENG Y G, CHEN J, ZHU P J. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J]. Science Bulletin,2008,53(10):1574-1586.
[8] MENG Z Y, YAN D, ZHANG Y. General features of squall lines in East China[J]. Monthly Weather Review, 2013,141(5):1629-1647.
[9] HE H Z, ZHANG F Q. Diurnal variations of warm-season precipitation over Northern China[J]. Monthly Weather Review, 2010,138(4):1017-1025.
[10] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Monthly Weather Review, 2000, 128(10):3413-3436.
[11] MENG Z, ZHANG Y. On the squall lines preceding landfalling tropical cyclones in China[J]. Monthly Weather Review, 2012,140(2):445-470.
[12] ZHENG L, SUN J, ZHANG X, et al. Organizational modes of mesoscale convective systems[J]. Weather & Forecasting, 2013,28(5):1081-1098.
[13] 陈炯, 郑永光, 张小玲, 等.中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J].气象学报,2013,71(3):367-382. CHEN J, ZHENG Y G, ZHANG X L, et al. Analysis of the climatological distribution and diurnal variation of the short-duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season[J]. Acta Meteorologica Sinica,2013,71(3):367-382.
[14] BROOKS H E, STENSRUD D J. Climatology of heavy rain events in the United States from hourly precipitation observations[J]. Monthly Weather Review, 2000, 128(4):1194-1201.
[15] HOUZE R A, SMULL B F, DODGE P. Mesoscale organization of springtime rainstorms in Oklahoma[J]. Monthly Weather Review, 1990,118(3):613-654.
[16] TIAN F Y, ZHENG Y G, TAO Z. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China[J]. Journal of Meteorological Research, 2015,3(3):370-384.
[17] 陈翔翔, 丁治英, 刘彩虹, 等. 2000-2009年5、6月华南暖区暴雨形成系统统计分析[J]. 热带气象学报,2012(5):707-718. CHEN X X, DING Z Y, LIU C H, et al. Statistic analysis on the formation system of warm-sector heavy rainfall in May and June from 2000-2009[J]. Journal of Tropical Meteorology,2012(5):707-718.
[18] 鲍名. 近50 a我国持续性暴雨的统计分析及其大尺度环流背景[J]. 大气科学, 2007, 31(5):779-792. BAO M. The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(5):779-792.
[19] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展[J]. 应用气象学报, 2015,26(6):641-657. ZHEN Y G, ZHOU K H, SHENG J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather[J]. Journal of Applied Meteorological Science, 2015,26(6):641-657.
[20] ZHANG Y, ZHANG F, SUN J. Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains[J]. Atmospheric Chemistry & Physics, 2014, 14(19):10741-10759.
[21] YU R, ZHOU T, XIONG A, et al. Diurnal variations of summer precipitation over contiguous China[J]. Geophysical Research Letters, 2007, 34(1):223-234.
[22] WANG C C, CHEN T J, CARBONE R E. A climatology of warm-season cloud patterns over east Asia based on GMS infrared brightness temperature observations[J]. Monthly Weather Review, 2004, 132(7):1606-1629.
[23] WANG C C, CHEN T J, CARBONE R E. Variability of warm-season cloud episodes over east Asia based on GMS infrared brightness temperature observations[J]. Monthly Weather Review, 2005, 133(6):1478-1500.
[24] BAO X, ZHANG F, SUN J. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China[J]. Monthly Weather Review, 2011, 139(9):2790-2810.
[25] 王丽娟, 何金海, 司东, 等. 东北冷涡过程对江淮梅雨期降水的影响机制[J]. 大气科学学报, 2010, 33(1):89-97. WANG L J, HE J H, SI D, et al. Analysis of impacts of northeast cold vortex processes on meiyu rainfall period over Yangtze-Huaihe River Basin[J].Transactions of Atmospheric Sciences, 2010,33(1):89-97.
[26] BLUESTEIN H B, MARX G T, JAIN M H. Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring[J]. Monthly Weather Review, 1985, 115(11):2719-2727.
[27] CHEN G T J, CHOU H C. General characteristics of squall lines observed in TAMEX[J]. Monthly Weather Review, 1993, 121(3):726-733.
[28] WYSS J, EMANUEL K A. The pre-storm environment of midlatitude prefrontal squall lines[J]. Monthly Weather Review, 2009, 116(3):790-794.
[29] 郑淋淋,孙建华. 干、湿环境下中尺度对流系统发生的环流背景和地面特征分析[J]. 大气科学, 2013,37(4):891-904. ZHENG L L, SUN J H. Characteristics of synoptic and surface circulation of mesoscale convective systems in dry and moist environmental conditions[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(4):891-904.
No related articles found!