Please wait a minute...
浙江大学学报(理学版)  2017, Vol. 44 Issue (5): 576-583    DOI: 10.3785/j.issn.1008-9497.2017.05.013
海洋科学     
基于GOCI提取东海近几年赤潮信息及时序分析
江彬彬1,2, 李辉林1, 滕国超2, 闫金宝1, 李宝喜1, 李巨宝1, 张霄宇2, 张宝华1
1. 中国冶金地质总局浙江地质勘查院海洋所, 浙江 衢州 324000;
2. 浙江大学 地球科学学院, 浙江 杭州 310027
Using GOCI extracting information of red tide for time-series analysing in East China Sea
JIANG Binbin1,2, LI Huilin1, TENG Guochao2, YAN Jinbao1, LI Baoxi1, LI Jubao1, ZHANG Xiaoyu2, ZHANG Baohua1
1. Institute of Oceanography, Zhejiang Geological Institute of China Metallurgical Geology Bureau, Quzhou 324000, Zhejiang Province, China;
2. School of Earth Science, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2450 KB)   HTML  
摘要: 赤潮已经成为我国东海最普遍的海洋灾害之一.利用卫星手段监测赤潮也由来已久.采用Geostationary Ocean Color Imager(GOCI)静止卫星对东海近几年的赤潮进行了监测和分析.研究表明:1)利用Quick Atmospheric Correction(QUAC)获取GOCI的归一化离水辐射率,其中nLw(555 nm)作为赤潮事件的特征波段来监测赤潮是有效的;2)以nLw(555 nm)为峰值且通过小于1.5 mW·cm-2·sr-1·μm-1这一阀值信息来监测中国东海3次不同时间和区域的赤潮事件.3次事件分别为2011年5月东海原甲藻事件、2011年7月中肋骨条藻事件和2014年5月东海原甲藻事件;3)赤潮面积的日变化主要受有效光合辐射和潮位的影响.通过QUAC获取归一化离水辐射率GOCI-nLw(550 nm),将nLw(555 nm)作为特征波段来获取赤潮信息,并结合光照强度、潮位、温度等参数,分析了赤潮面积日变化的可能原因.
关键词: 赤潮东海GOCI遥感    
Abstract: In the East China Sea, red tide has become one of the most common marine disasters. Using satellite detecting red tide has already begun for a long time. Geostationary Ocean Color Imager (GOCI) has been used to monitor and analyze the red tide which happened recently in the East China Sea. The results demonstrate that:1)The normalized water leaving radiance was obtained using Quick Atmospheric Correction (QUAC) for GOCI, and it was effective that normalized water leaving radiance (nLw) 555 nm was chose as the characteristic to monitor red tide; 2) Temporal and spatial distribution of red tide in East China Sea was detected by the threshold of nLw (555 nm) which is peak and less than 1.5 mW·cm-2·sr-1·μm-1. The three events were that Prorocentrum donghaiense in May 2011, the Skeletonema costatum in July 2011, Prorocentrum donghaiense in May 2014, respectively. 3) The red tide area was mainly affected by the tidal and photosynthetically active radiation during a day.NLw (555 nm) was obtained by the atmospheric correction of GOCI through QUAC. And, the red tide area was obtained by the threshold of nLw (555 nm). Combining the photosynthetically active radiation, temperature and tide, the potential reason of variety of red tide during a day was analyzed.
Key words: red tide    East China Sea    GOCI    remote sensing
收稿日期: 2016-03-01 出版日期: 2017-05-01
CLC:  P715.7  
基金资助: 国家重点研发计划项目(2016YFC1400901);浙江省公益技术应用研究计划项目(2016C33SA901743);浙江大学空气污染与健康研究中心资助项目.
作者简介: 江彬彬(1990-),ORCID:http://orcid.org/0000-0003-4099-3302,男,硕士研究生,主要从事近岸水色遥感反演机理研究,E-mail:499163435@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江彬彬
李辉林
滕国超
闫金宝
李宝喜
李巨宝
张霄宇
张宝华

引用本文:

江彬彬, 李辉林, 滕国超, 闫金宝, 李宝喜, 李巨宝, 张霄宇, 张宝华. 基于GOCI提取东海近几年赤潮信息及时序分析[J]. 浙江大学学报(理学版), 2017, 44(5): 576-583.

JIANG Binbin, LI Huilin, TENG Guochao, YAN Jinbao, LI Baoxi, LI Jubao, ZHANG Xiaoyu, ZHANG Baohua. Using GOCI extracting information of red tide for time-series analysing in East China Sea. Journal of ZheJIang University(Science Edition), 2017, 44(5): 576-583.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2017.05.013        https://www.zjujournals.com/sci/CN/Y2017/V44/I5/576

[1] FEI H. The cause of red tides[J]. Chinese Journal of Science and Art,1952,22:1-3.
[2] CANNIZZARO J P, CARDER K L, CHEN F R, et al. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data[J]. Continental Shelf Research,2008,28(1):137-158.
[3] CHOI J K, MIN J E, NOH J H, et al. Harmful algal bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI)[J]. Harmful Algae,2014,39:295-302.
[4] 孙丽雅,陈芸芝,汪小钦.时间序列MODIS数据赤潮信息提取研究[J].遥感信息,2012(3):71-77. SUN L Y, CHEN Y Z, WANG X Q. Remote sensing detection of red tide by time-series MODIS date[J]. Remote Sensing Information,2012(3):71-77.
[5] SISWANTO E, ISHIZAKA J, TRIPATHY S C, et al. Detection of harmful algal blooms of Karenia mikimotoi using MODIS measurements:A case study of Seto-Inland Sea, Japan[J]. Remote Sensing of Environment,2013,129:185-196.
[6] LOU X, HU C. Diurnal changes of a harmful algal bloom in the East China Sea:Observations from GOCI[J]. Remote Sensing of Environment,2014,140:562-572.
[7] TAO B, MAO Z, LEI H, et al. A novel method for discriminating Prorocentrum donghaiense from diatom blooms in the East China Sea using MODIS measurements[J]. Remote Sensing of Environment,2015,158:267-280.
[8] 丘仲锋,崔廷伟,何宜军.基于水体光谱特性的赤潮分布信息MODIS遥感提取[J].光谱学与光谱分析,2011,31(8):2233-2237. QIU Z F, CUI T W, HE Y J. Retrieve of red tide distributions from MODIS date based on the characteristics of water spectrum[J]. Spectroscopy and Spectral Analysis,2011,31(8):2233-2237.
[9] HU C, MULLER-KARGER F E, TAYLOR C J, et al. Red tide detection and tracing using MODIS fluorescence data:A regional example in SW Florida coastal waters[J]. Remote Sensing of Environment,2005,97(3):311-321.
[10] 赵冬至,张丰收,杜飞,等.不同藻类水体太阳激发的叶绿素荧光峰(SICF)特性研究[J].遥感学报,2005,9(3):265-270. ZHAO D Z, ZHANG F S, DU F, et al. Interpretation of sun-induced fluorescence peak of chlorophyll a on reflectance spectrum of algal waters[J]. Journal of Remote Sensing,2005,9(3):265-270.
[11] 邢小罡,赵冬至,刘玉光,等.叶绿素a荧光遥感研究进展[J].遥感学报,2007,11(1):137-144. XING X G, ZHAO D Z, LIU Y G, et al. Progress in fluorescence remote sensing of chlorophyllⅡ-a. Journal of Remote Sensing,2007,11(1):137-144.
[12] TAO B, MAO Z, PAN D, et al. Influence of bio-optical parameter variability on the reflectance peak position in the red band of algal bloom waters[J]. Ecological Informatics,2013,16:17-24.
[13] LIU L, ZHOU J, ZHENG B, et al. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China[J]. Marine Pollution Bulletin,2013,72(1):213-221.
[14] DAI X, LU D, GUAN W, et al. The correlation between Prorocentrum donghaiense blooms and the Taiwan warm current in the east China Sea-Evidence for the "Pelagic Seed Bank" hypothesis[J]. Chinese Journal of Oceanology and Limnology,2013,31(2):267-281.
[15] WENG H X, TIAN R X, JI Z Q, et al. Potential relationships between atmospheric particulate matter transported by winter monsoons and red tides in the East China Sea[J]. Chinese Science Bulletin,2011,56(3):297-305.
[16] ZHANG J, LIU S M, REN J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf[J]. Progress in Oceanography,2007,74(4):449-478.
[17] BIAN C, JIANG W, QUAN Q, et al. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011[J]. Journal of Marine Systems,2013,121/122:24-35.
[18] RYU J H, HAN H J, CHO S, et al. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)[J]. Ocean Science Journal,2012,47(3):223-233.
[19] 江彬彬, 张霄宇, 杜泳, 等.基于GOCI的近岸高浓度悬浮泥沙遥感反演——以杭州湾及邻近海域为例[J].浙江大学学报:理学版,2015,42(2):220-227. JIANG B B, ZHANG X Y, DU Y, et al. Retrieving high concentrati
[1] 朱悦,徐志红,蒋晓敏,张嫣然,王建锋,王善华,陈昱蓉,张丰. 基于遥感生态指数的土地利用程度与环境质量协调发展研究[J]. 浙江大学学报(理学版), 2023, 50(3): 322-331.
[2] 吴郁文,林杰. 融合遥感与社会感知数据的城市土地利用分类方法[J]. 浙江大学学报(理学版), 2023, 50(1): 83-95.
[3] 周国华, 蒋晖, 顾晓清, 殷新春. 基于半监督子空间迁移的稀疏表示遥感图像场景分类方法[J]. 浙江大学学报(理学版), 2021, 48(6): 684-693.
[4] 王协, 章孝灿, 苏程. 基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类[J]. 浙江大学学报(理学版), 2020, 47(6): 715-723.
[5] 童晨, 李加林, 叶梦姚, 童亿勤, 田鹏, 王丽佳, 刘瑞清, 周子靖. 东海区海岸带景观格局变化对生态系统服务价值的影响[J]. 浙江大学学报(理学版), 2020, 47(4): 492-507.
[6] 姜斌, 黄祥志, 杜震洪, 张丰, 刘仁义. 一种动态实时的遥感专题应用系统定制框架[J]. 浙江大学学报(理学版), 2018, 45(6): 758-764.
[7] 吴小君, 方秀琴, 苗月鲜, 王凯, 庞婵云. 基于Landsat的合肥市城市扩张研究[J]. 浙江大学学报(理学版), 2017, 44(6): 631-639.
[8] 陈可欣, 张丰, 杜震洪, 刘仁义. 基于遥感影像的嘉兴市城市扩张与驱动力分析[J]. 浙江大学学报(理学版), 2016, 43(6): 709-715.
[9] . 基于GPU加速的遥感影像金字塔创建算法及其在土地遥感影像管理中的应用[J]. 浙江大学学报(理学版), 2011, 38(6): 695-700.