Please wait a minute...
浙江大学学报(理学版)  2017, Vol. 44 Issue (4): 472-479    DOI: 10.3785/j.issn.1008-9497.2017.04.013
环境科学     
高效BiOI/BiOBr可见光催化剂的制备、性能及机理研究
张群1, 鲍玥2, 周旻昀3, 史宇滨2, 邹骏华2, 万先凯2, 史惠祥2
1. 杭州市余杭区环境保护局, 浙江 杭州 311100;
2. 浙江大学 环境工程研究所, 浙江 杭州 310058;
3. 浙江环科环境咨询有限公司, 浙江 杭州 310000
Preparation, performance and mechanism study of high-efficient BiOI/BiOBr visible light photocatalyst
ZHANG Qun1, BAO Yue2, ZHOU Minyun3, SHI Yubin2, ZOU Junhua2, WAN Xiankai2, SHI Huixiang2
1. Environment Protection Bureau of Yuhang District, Hangzhou 311100, China;
2. Institute of Environmental Engineering, Zhejiang University, Hangzhou 310058, China;
3. Zhejiang Huanke Environment Consultancy Company, Hangzhou 310000, China
 全文: PDF(2306 KB)   HTML  
摘要: 利用无机原料水热合成法制备BiOI/BiOBr复合可见光催化剂,通过XRD、SEM、EDS、DRS、I-t响应曲线等手段对催化剂的物相组成和光化学性能进行了系统表征.以RhB为目标污染物,考察了催化剂的光催化活性并对最优比例催化剂的稳定性进行评价,通过ESR分析和自由基捕获实验探究了RhB的光催化降解机制.研究结果表明:无机原料水热合成法可成功制备纯度高、结晶性能良好的BiOI/BiOBr复合可见光催化剂;BiOI的复合降低了BiOBr光催化剂的电子-空穴的复合,拓宽其可见光响应范围,提高了光催化降解活性,其中质量比为8%的BiOI/BiOBr活性最佳,可见光照21 min后RhB的脱色率可达100%,是纯BiOBr的1.50倍,且重复使用5次后仍具有较高的光催化活性;复合催化剂光催化降解RhB的过程中,参与降解的主要活性物种为空穴(h+)和超氧自由基(·O2-).
关键词: BiOIBiOBr罗丹明B可见光催化剂改性    
Abstract: BiOI/BiOBr composite visible photocatalyst was prepared via hydrothermal method using inorganic materials, and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, UV-vis diffuse reflectance spectra and transient photocurrent response curve for the phase composition and optical property. Taking rhodamine B (RhB) as the target pollutant, the photocatalytic activity and stability of photocatalysts were studied under visible light irradiation. Furthermore, the mechanism in the process of photocatalytic degradation was discussed by electron spin resonance spectroscopy analysis and the trapping experiment of generated radicals. The results show that BiOI/BiOBr composite photocatalyst prepared by hydrothermal method using inorganic materials own high purity and excellent crystallization performance. Composited by BiOI, BiOBr exhibits higher photocatalytic activity considerably by reducing the rate of electron-hole recombination and broadening the range of visible-light response. Among the prepared composites with various BiOI contents, 8% BiOI/BiOBr exhibits the best efficiency in the degradation of RhB. After irradiation for 21 min, the degradation rate of RhB is 100%, which is 1.5 times of pure BiOBr. After 5 times recycle, it also shows high photocatalytic activity. The results also suggest that holes and ·O2- are the main reactive species in the photocatalytic process of the RhB degradation.
Key words: BiOI    BiOBr    rhodamine B    visible photocatalyst    modification
收稿日期: 2016-05-26 出版日期: 2017-12-09
CLC:  X703  
基金资助: 国家水体污染控制与治理科技重大专项(2014ZX07101-012);浙江省重大科技专项(2014C03002).
通讯作者: 史惠祥,ORCID:http://orcid.org/0000-0002-5704-4229,E-mail:huixiang_shi@163.com.     E-mail: huixiang_shi@163.com
作者简介: 张群(1981-),ORCID:http://orcid.org/0000-0001-8185-0119,女,硕士,主要从事环保管理工作.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张群
鲍玥
周旻昀
史宇滨
邹骏华
万先凯
史惠祥

引用本文:

张群, 鲍玥, 周旻昀, 史宇滨, 邹骏华, 万先凯, 史惠祥. 高效BiOI/BiOBr可见光催化剂的制备、性能及机理研究[J]. 浙江大学学报(理学版), 2017, 44(4): 472-479.

ZHANG Qun, BAO Yue, ZHOU Minyun, SHI Yubin, ZOU Junhua, WAN Xiankai, SHI Huixiang. Preparation, performance and mechanism study of high-efficient BiOI/BiOBr visible light photocatalyst. Journal of ZheJIang University(Science Edition), 2017, 44(4): 472-479.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2017.04.013        https://www.zjujournals.com/sci/CN/Y2017/V44/I4/472

[1] CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews,2010,39(11):4206-4219.
[2] ZHANG L W, FU H B, ZHU Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon[J]. Advanced Functional Materials,2008,18(15):2180-2189.
[3] CHANG X F, GONDAL M A, AL-SAADI A A, et al. Photodegradation of rhodamine B over unexcited semiconductor compounds of BiOCl and BiOBr[J]. Journal of Colloid and Interface Science,2012,377(1):291-298.
[4] JIANG J, ZHAO K, XIAO X Y, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society,2012,134(10):4473-4476.
[5] ZHANG L, CAO X F, CHEN X T, et al. BiOBr hierarchical microspheres:Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J]. Journal of Colloid and Interface Science,2011,354(2):630-636.
[6] XU J, MENG W, ZHANG Y, et al. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway[J]. Applied Catalysis B:Environmental,2011,107(3/4):355-362.
[7] LU L F, KONG L, JIANG Z, et al. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr[J]. Catalysis Letters,2012,142(6):771-778.
[8] LIU Z S, WU B T, ZHU Y B, et al. Fe-ions modified BiOBr mesoporous microspheres with excellent photocatalytic property[J]. Catalysis Letters,2012,142(12):1489-1497.
[9] LI Y L, LIU Y M, WANG J S, et al. Titanium alkoxide induced BiOBr-Bi2WO6 mesoporous nanosheet composites with much enhanced photocatalytic activity[J]. Journal of Materials Chemistry A,2013,1(27):7949-7956.
[10] KONG L, JIANG Z, LAI H H, et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J]. Journal of Catalysis,2012,293(18):116-125.
[11] SONG X L, MU K, WANG C H. Effect of surface phase transition and Pt loading of BiOBr nanosheets on synergistic photocatalysis[J]. Chinese Journal of Inorganic Chemistry,2014,30(7):1609-1615.
[12] JIANG G H, WANG X H, WEI Z, et al. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres[J]. Journal of Materials Chemistry,2013,1(7):2406-2410.
[13] XIA J X, DI J, YIN S, et al. Solvothermal synthesis and enhanced visible-light photocatalytic decontamination of bisphenol A (BPA) by gC3N4/BiOBr heterojunctions[J]. Materials Science in Semiconductor Processing,2014,24(1):96-103.
[14] LI G T, WONG K H, ZHANG X W, et al. Degradation of acid orange 7 using magnetic AgBr under visible light:The roles of oxidizing species[J]. Chemosphere,2009,76(9):1185-1191.
[15] ZHANG L S, WONG K H, YIP H Y, et al. Effective photo-catalytic disinfection of E.coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light:The role of diffusing hydroxyl radicals[J]. Environmental Science & Technology,2010,44(4):1392-1398.
[16] YIN M C, LI Z S, KOU J H, et al. Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system[J]. Environmental Science & Technology,2009,43(21):8361-8366.
[17] ZHANG N, LIU S Q, FU X Z, et al. Synthesis of M@TiO2 (M=Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity[J]. The Journal of Physical Chemistry C,2011,115(18):9136-9145.
[18] YOON M, SEO M, JEONG C, et al. Synthesis of liposome-templated titania nanodisks:Optical properties and photocatalytic activities[J]. Chemistry of Materials,2005,17(24):6069-6079.
[1] 陈芳,郭慧君,宋雨濛,楼辉. 改性核桃壳炭负载的碳化钼催化剂的制备及其在玉米油加氢脱氧反应中的应用[J]. 浙江大学学报(理学版), 2023, 50(2): 174-184.
[2] 荆王松, 王长智, 梅荣武, 史惠祥, 徐峰. 改性磁铁矿/H2O2非均相类Fenton体系催化降解橙黄Ⅱ的研究[J]. 浙江大学学报(理学版), 2018, 45(4): 461-467.
[3] 蔡远征, 郭正虹, 方征平. 有机改性蒙脱土与微胶囊红磷复配阻燃玻纤增强PET[J]. 浙江大学学报(理学版), 2013, 40(4): 437-440.